1.Effects and mechanism of Qiangxin decoction on mitochondrion of rats with chronic heart failure
Meiling MAO ; Jianqi LU ; Zhide ZHU ; Yan PANG ; Liyu XIE ; Jiayong CHEN ; Xinyu WU ; Xiang XIAO ; Junshen LU ; Weiqi SHI
China Pharmacy 2025;36(2):160-165
OBJECTIVE To investigate the effects and potential mechanism of Qiangxin decoction on mitochondrion of rats with chronic heart failure (CHF). METHODS The CHF model was established by ligating the left anterior descending branch of the coronary artery. Modeled rats were divided into model group, Qiangxin decoction low-dose and high-dose groups (12.25, 24.50 g/kg, calculated by crude drug), and chemical medicine group (Sacubitril valsartan sodium tablets, 10.42 mg/kg), with 10 rats in each group; control group was set up without treatment. Each group of rats was orally administered with the corresponding medication or normal saline twice a day for 28 consecutive days. After the last medication, the contents of N-terminal pro-brain natriuretic peptide (NT-proBNP) and adenosine triphosphate (ATP) in serum and phosphatidic acid (PA) and cardiolipin (CL) in myocardial tissue were all detected; the pathological damage and collagen fibrosis of rat myocardial tissue were observed; the apoptosis of myocardial cells was determined; the ultrastructure of myocardial tissue was observed; the protein expressions of mitofusin 1 (Mfn1), Mfn2, optic atrophy protein 1 (OPA1) and dynamin-related protein 1 (Drp1) were all detected in myocardial tissue. RESULTS Compared with control group,the serum content of NT-proBNP, apoptotic rate of myocardial cells, and relative expressions of S-OPA1 and Drp1 proteins were all increased significantly; serum content of ATP,contents of PA and CL, and relative expressions of Mfn1, Mfn2 and L-OPA1 proteins were all significantly reduced (P<0.05). There were abnormal membrane tissue structure in various layers of myocardial tissue, degeneration and necrosis of myocardial cells, and severe fibrosis; the mitochondria were swollen, with reduced or absent cristae, and uneven matrix density. After intervention with Qiangxin decoction, the levels of the aforementioned quantitative indicators in serum and myocardial tissue of rats (excluding CL content in the Qiangxin decoction low- dose group) were significantly reversed (P<0.05); the pathological damage of myocardial tissue had significantly improved, fibrosis had significantly reduced, mitochondrial morphology tended to be normal, cristae had increased, and matrix density was uniform. CONCLUSIONS Qiangxin decoction can regulate myocardial mitochondrial function and structural integrity of CHF rats, thereby improving myocardial energy metabolism and antagonizing myocardial fibrosis, the mechanism of which may be associated with activating PA/Mfn/CL signaling pathway.
2.Effects and mechanism of Qiangxin decoction on mitochondrion of rats with chronic heart failure
Meiling MAO ; Jianqi LU ; Zhide ZHU ; Yan PANG ; Liyu XIE ; Jiayong CHEN ; Xinyu WU ; Xiang XIAO ; Junshen LU ; Weiqi SHI
China Pharmacy 2025;36(2):160-165
OBJECTIVE To investigate the effects and potential mechanism of Qiangxin decoction on mitochondrion of rats with chronic heart failure (CHF). METHODS The CHF model was established by ligating the left anterior descending branch of the coronary artery. Modeled rats were divided into model group, Qiangxin decoction low-dose and high-dose groups (12.25, 24.50 g/kg, calculated by crude drug), and chemical medicine group (Sacubitril valsartan sodium tablets, 10.42 mg/kg), with 10 rats in each group; control group was set up without treatment. Each group of rats was orally administered with the corresponding medication or normal saline twice a day for 28 consecutive days. After the last medication, the contents of N-terminal pro-brain natriuretic peptide (NT-proBNP) and adenosine triphosphate (ATP) in serum and phosphatidic acid (PA) and cardiolipin (CL) in myocardial tissue were all detected; the pathological damage and collagen fibrosis of rat myocardial tissue were observed; the apoptosis of myocardial cells was determined; the ultrastructure of myocardial tissue was observed; the protein expressions of mitofusin 1 (Mfn1), Mfn2, optic atrophy protein 1 (OPA1) and dynamin-related protein 1 (Drp1) were all detected in myocardial tissue. RESULTS Compared with control group,the serum content of NT-proBNP, apoptotic rate of myocardial cells, and relative expressions of S-OPA1 and Drp1 proteins were all increased significantly; serum content of ATP,contents of PA and CL, and relative expressions of Mfn1, Mfn2 and L-OPA1 proteins were all significantly reduced (P<0.05). There were abnormal membrane tissue structure in various layers of myocardial tissue, degeneration and necrosis of myocardial cells, and severe fibrosis; the mitochondria were swollen, with reduced or absent cristae, and uneven matrix density. After intervention with Qiangxin decoction, the levels of the aforementioned quantitative indicators in serum and myocardial tissue of rats (excluding CL content in the Qiangxin decoction low- dose group) were significantly reversed (P<0.05); the pathological damage of myocardial tissue had significantly improved, fibrosis had significantly reduced, mitochondrial morphology tended to be normal, cristae had increased, and matrix density was uniform. CONCLUSIONS Qiangxin decoction can regulate myocardial mitochondrial function and structural integrity of CHF rats, thereby improving myocardial energy metabolism and antagonizing myocardial fibrosis, the mechanism of which may be associated with activating PA/Mfn/CL signaling pathway.
3.Key Genes in Phenylpropanoid Biosynthesis Pathway of Lonicera macranthoides Based on Transcriptome and Metabolome Conjoint Analysis
Jiawei HE ; Jingyu ZHANG ; Juan ZENG ; Jiayuan ZHU ; Simin ZHOU ; Meiling QU ; Ribao ZHOU ; Xiangdan LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):167-175
ObjectiveBased on the conjoint analysis of transcriptome and metabolome, the key genes in the phenylpropanoid biosynthesis pathway of Lonicera macranthoides were explored, which provided a basis for further exploring the synthesis and regulation mechanism of phenylpropanoid compounds in "Xianglei" L. macranthoides. MethodsThe stem, leaves, and three flowering flowers of "Xianglei" L. macranthoides were selected as experimental materials to construct transcriptome and metabolome. The transcriptome and metabolomics were conjointly analyzed by the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and weighted correlation network analysis (WGCNA), and the key genes in the phenylpropanoid biosynthesis pathway of L. macranthoides were explored. ResultsIn this study, 77 differential phenylpropanoids and 315 differential genes were found. Through the joint analysis of transcription and metabolism, nine key differential metabolites and four key genes related to them were finally discovered. Among them, cinnamic acid, 5-O-caffeoylshikimic acid,sinapyl alcohol, and chlorogenic acid were higher in flowers, and the content of the iconic effective component, namely chlorogenic acid,decreased sharply during the withering period. Caffeic acid,ferulic acid, 5-hydroxyconiferaldehyde,p-coumaryl alcohol, and syringin were higher in leaves. These four key genes belong to the cinnamic alcohol dehydrogenase (CAD) family, 4-coumaric acid: Coenzyme A (4CL) family, hydroxycinnamyl transferase (HCT) family, and L-phenylalanine ammonlyase (PAL) family genes. ConclusionAmong the four key genes excavated from L. macranthoides, TRINITY_DN42767_c0_g6 is related to the synthesis of p-coumaryl alcohol and sinapyl alcohol. TRINITY_DN43525_c4_g1 uses caffeic acid,ferulic acid,and cinnamic acid as substrates to catalyze the next reaction. TRINITY_DN47958_c3_g4 correlates with the synthesis of 3-p-coumaroyl quinic acid and caffeoyl-CoA, and TRINITY_DN52595_c1_g2 correlates with cinnamic acid synthesis. These findings provide a basis for further exploring the synthesis and regulation mechanism of phenylpropanoids in "Xianglei" L. macranthoides.
4.Effects of electroacupuncture on cognitive impairment and mitophagy mediated by KIF5A/Miro1 pathway in Parkinson's disease mice.
Mengzhu LI ; Jiafan CHEN ; Mengxuan CHEN ; Haiyan LI ; Zhenyi ZHANG ; Da GAO ; Weicong ZENG ; Lijun ZHAO ; Meiling ZHU
Chinese Acupuncture & Moxibustion 2025;45(8):1111-1119
OBJECTIVE:
To explore the improvement effect of electroacupuncture (EA) based on Xingnao Kaiqiao acupuncture (acupuncture for regaining consciousness and opening orifices) on cognitive impairment in mice with Parkinson's disease (PD), and to explore its regulatory mechanisms on the kinesin family member 5A (KIF5A)/mitochondrial Rho GTPase 1 (Miro1) pathway and mitophagy in prefrontal cortical neurons.
METHODS:
A total of 70 male C57BL/6J mice of clean grade were randomly divided into a normal group (12 mice), a sham operation group (12 mice), and a model pre-screening group (46 mice). Unilateral stereotaxic injection of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle was adopted to establish the PD model in the model pre-screening group. Twenty-four mice after successful modeling were randomly selected and divided into a model group and an EA group, 12 mice in each one. In the EA group, acupuncture was applied at "Shuigou" (GV26) and bilateral "Sanyinjiao" (SP6) and "Neiguan" (PC6), ipsilateral "Sanyinjiao" (SP6) and "Neiguan" (PC6) were connected to EA respectively, with disperse-dense wave, 5 Hz/20 Hz in frequency, 0.5 mA in current intensity, 20 min a time, 6 times a week for 30 days. Cognitive function was assessed by Y-maze and Morris water maze tests; morphology of prefrontal cortex was observed by H.E. staining; reactive oxygen species (ROS) level in prefrontal cortex was detected by fluorescence probe method; mitochondrial morphology and autophagosome ultrastructure were observed by transmission electron microscopy; the mRNA expression of tyrosine hydroxylase (TH) was detected by quantitative real-time PCR; the protein expression of TH, KIF5A, Miro1, p62, Parkin and PTEN induced kinase 1 (PINK1) was detected by Western blot.
RESULTS:
Compared with the sham operation group, both the model group and the EA group exhibited increased rotation number of per minute (P<0.001). Compared with the sham operation group, in the model group, the novel arm exploration time of Y-maze test was shortened (P<0.001), the escape latency of Morris water maze test was prolonged (P<0.05) and the platform crossing number of Morris water maze test was reduced (P<0.01); in the prefrontal cortex, the number of cellular vacuole and neurons with karyopyknosis was increased (P<0.001), and mitochondrial autophagosomes could be observed; in the prefrontal cortex, the relative expression of ROS was increased (P<0.001), the protein and mRNA expression of TH was decreased (P<0.001), the protein expression of Miro1, PINK1, Parkin was increased (P<0.001, P<0.01), the protein expression of KIF5A and p62 was decreased (P<0.001). Compared with the model group, in the EA group, the novel arm exploration time of Y-maze test was prolonged (P<0.01), the escape latency of Morris water maze test was shortened (P<0.05) and the platform crossing number of Morris water maze test was increased (P<0.05); in the prefrontal cortex, the number of cellular vacuole and neurons with karyopyknosis was decreased (P<0.001), and the number of mitochondrial autophagosomes reduced and the mitochondrial morphology was improved; in the prefrontal cortex, the relative expression of ROS was decreased (P<0.01), the protein and mRNA expression of TH was increased (P<0.001, P<0.01), the protein expression of Miro1, PINK1, Parkin was decreased (P<0.001, P<0.01, P<0.05), the protein expression of KIF5A and p62 was increased (P<0.01, P<0.05).
CONCLUSION
Xingnao Kaiqiao electroacupuncture effectively alleviates cognitive impairment and damage of neuronal function in PD mice, its mechanism may be related to the regulation of KIF5A/Miro1 pathway, hence reducing the mitophagy in prefrontal cortical neurons.
Animals
;
Electroacupuncture
;
Male
;
Mice
;
Parkinson Disease/physiopathology*
;
Cognitive Dysfunction/psychology*
;
Kinesins/genetics*
;
Humans
;
Mitophagy
;
Mice, Inbred C57BL
;
rho GTP-Binding Proteins/genetics*
;
Mitochondria/genetics*
;
Prefrontal Cortex/metabolism*
5.Osteomodulin modulates the inflammatory responses via the interleukin-1 receptor 1/nuclear factor-κB signaling pathway in dental pulpitis.
Yueyi YANG ; Xuchen HU ; Meiling JING ; Xiaohan ZHU ; Xiaoyu LIU ; Wenduo TAN ; Zhanyi CHEN ; Chenguang NIU ; Zhengwei HUANG
International Journal of Oral Science 2025;17(1):41-41
Pulpitis is a common infective oral disease in clinical situations. The regulatory mechanisms of immune defense in pulpitis are still being investigated. Osteomodulin (OMD) is a small leucine-rich proteoglycan family member distributed in bones and teeth. It is a bioactive protein that promotes osteogenesis and suppresses the apoptosis of human dental pulp stem cells (hDPSCs). In this study, the role of OMD in pulpitis and the OMD-induced regulatory mechanism were investigated. The OMD expression in normal and inflamed human pulp tissues was detected via immunofluorescence staining. Intriguingly, the OMD expression decreased in the inflammatory infiltration area of pulpitis specimens. The cellular experiments demonstrated that recombined human OMD could resist the detrimental effects of lipopolysaccharide (LPS)-induced inflammation. A conditional Omd knockout mouse model with pulpal inflammation was established. LPS-induced inflammatory impairment significantly increased in conditional Omd knockout mice, whereas OMD administration exhibited a protective effect against pulpitis. Mechanistically, the transcriptome alterations of OMD overexpression showed significant enrichment in the nuclear factor-κB (NF-κB) signaling pathway. Interleukin-1 receptor 1 (IL1R1), a vital membrane receptor activating the NF-κB pathway, was significantly downregulated in OMD-overexpressing hDPSCs. Additionally, the interaction between OMD and IL1R1 was verified using co-immunoprecipitation and molecular docking. In vivo, excessive pulpal inflammation in Omd-deficient mice was rescued using an IL1R antagonist. Overall, OMD played a protective role in the inflammatory response via the IL1R1/NF-κB signaling pathway. OMD may optimize the immunomodulatory functions of hDPSCs and can be used for regenerative endodontics.
Pulpitis/metabolism*
;
NF-kappa B/metabolism*
;
Animals
;
Signal Transduction
;
Humans
;
Mice
;
Mice, Knockout
;
Dental Pulp/metabolism*
;
Disease Models, Animal
;
Lipopolysaccharides
6.Protective Effect of Liuwei Dihuangwan on Mitochondrial Damage in AD Model of Caenorhabditis Elegans
Jinfeng ZHANG ; Yuliang TONG ; Jiapeng WANG ; Ting SU ; Deping ZHAO ; Hao YU ; Kun ZUO ; Ziyue ZHU ; Meiling JIN ; Ning ZHANG ; Xia LEI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(3):18-25
ObjectiveTo investigate the protective effect of the extract of Liuwei Dihuangwan (LW) on mitochondrial damage in the Alzheimer's disease (AD) model of Caenorhabditis elegans (C. elegans). MethodC. elegans transfected with human β-amyloid protein (Aβ) 1-42 gene was used as an AD model. The rats were divided into blank group, model group, metformin group (50 mmol·L-1), and low, medium, and high dose (1.04, 2.08, 4.16 g·kg-1) LW groups. Behavioral methods were used to observe the sensitivity of 5-hydroxytryptamine (5-HT) in nematodes. Western blot was used to detect the expression of Aβ in nematodes. Total ATP content in nematodes was detected by the adenine nucleoside triphosphate (ATP) kit, and mitochondrial membrane potential was detected by the JC-1 method. In addition, the mRNA expression of Aβ expression gene (Amy-1), superoxide dismutase-1 (SOD-1), mitochondrial transcription factor A homologous gene-5 (HMG-5), mitochondrial power-associated protein 1 (DRP1), and mitochondrial mitoprotein 1 (FIS1) was detected by real-time fluorescence quantitative polymerase chain reaction (RT-PCR). ResultThe extract of LW could reduce the hypersensitivity of the AD model of nematodes to exogenous 5-HT (P<0.05) and delay the AD-like pathological characteristics of hypersensitivity to exogenous 5-HT caused by toxicity from overexpression of Aβ in neurons of the AD model of nematodes. Compared with the blank group, in the model group, the mRNA expression of Aβ protein and Amy-1 increased (P<0.01), and the mRNA expression of SOD-1 and HMG-5 decreased (P<0.01). The mRNA expression of DRP1 and FIS1 increased (P<0.01), and the level of mitochondrial membrane potential decreased (P<0.05). The content of ATP decreased (P<0.01). Compared with the model group, in the positive medicine group and medium and high dose LW groups, the mRNA expression of Aβ protein and Amy-1 decreased (P<0.05,P<0.01), and the mRNA expression of SOD-1 and HMG-5 increased (P<0.01). The mRNA expression of DRP1 decreased (P<0.05,P<0.01), and that of FIS1 decreased (P<0.01). The level of mitochondrial membrane potential increased (P<0.01), and the content of ATP increased (P<0.05,P<0.01). ConclusionThe extract of LW may enhance the antioxidant ability of mitochondria, protect mitochondrial DNA, reduce the fragmentation of mitochondrial division, repair the damaged mitochondria, adjust the mitochondrial membrane potential, restore the level of neuronal ATP, and reduce the neuronal damage caused by Aβ deposition.
7.Current situation and thinking of perioperative treatment of esophageal cancer
Xiangyuan LI ; Rong XIAO ; Meiling ZHU
Tumor 2024;44(1):54-61
For many years,the perioperative treatment of esophageal cancer in China has been based on chemotherapy or chemoradiotherapy.However,in the recent years,with the emergence of immunotherapy represented by immune checkpoint inhibitors,multidisciplinary comprehensive treatment,precise treatment under the guidance of molecular pathology,and guided selection of different therapies under the guidance of different tumor load phenotypes(T/N load relative relationship),the traditional model of perioperative treatment of esophageal cancer is faced with challenges.Nonetheless,it has also provided new opportunities to re-examine the current perioperative treatment model of esophageal cancer,which will also help to promote the optimization of perioperative treatment strategies for esophageal cancer.Therefore,it is necessary to fully understand and further think about the current situation of perioperative treatment of esophageal cancer.
8.Research progress on the mechanism of D-galactose-induced brain aging model
Ziyue ZHU ; Meiling JIN ; Xiangyue XU ; Qing LIU ; Jiaxue ZHU ; Mingjun FU ; Xia LEI ; Ning ZHANG
Chinese Journal of Comparative Medicine 2024;34(10):104-110,117
As a normal physiological substance,D-galactose can induce a process similar to natural brain aging in vivo and in vitro when administered excessively,and thus it is widely used to induce brain aging models in China and abroad.The model of brain failure induced by D-galactose has the advantages of a short modeling time,low cost,and significant effect.However,the induction mechanisms are complex and diverse,and the relationships between the mechanisms are unclear,which limit the practical applications of the model.This article reviews the in vivo metabolism of D-galactose and the various mechanisms involved in the induction of brain aging,as well as the links between the mechanisms,to provide a reference for the application and development of this model and the in-depth study of brain aging.
9.Effect of bluetongue virusinfection on type Ⅰ interferon response in BHK-21 cells
Shimei LUO ; Yunyi CHEN ; Qisha LI ; Yanmei ZHOU ; Yifei WANG ; Xinyu LIAO ; Xuer-Ou HU ; Yuanjian WEI ; Mengqin LI ; Meng ZHU ; Xun ZHANG ; Beirui CHEN ; Xianping MA ; Jiarui XIE ; Meiling KOU ; Haisheng MIAO ; Fang LI ; Huashan YI
Chinese Journal of Veterinary Science 2024;44(8):1639-1644,1690
Bluetongue virus is an arbovirus that seriously harms ruminants such as sheep,this study aims to investigate the molecular mechanism of bluetongue virus infection and host cell interferon antiviral immune response.The study was conducted to characterize the mRNA expression of inter-feron pathway genes by real-time fluorescence quantitative PCR,as well as Western blot analysis of MDA5,TRAF3,RIG-Ⅰ,and TBK1 protein expression in BHK-21 cells induced by BTV with a multiplicity of infections(MOI)of 1 for 18,24,and 36 h.The results showed that the most pro-nounced changes in the expression of interferon signaling pathway genes were observed at 24 h of induction,the gene mRNA expression levels of the IFN-α,IFN-β,RIG-Ⅰ,TBK1,MDA5,VISA,and TRAF3 genes were upregulated.However,the mRNA expression levels of IKKε and TRAF6 genes were downregulated.At the protein level,MDA5 and TBK1 proteins were upregulated while RIG-1 and TRAF3 proteins were downregulated,which showed that BTV infection induces a typeⅠ interferon immune response in BHK-21 cells.This study lays the foundation for further exploring the antiviral immunity mechanism of IFN-Ⅰ signaling pathway regulatory genes in host cells infected with BTV infection.
10.Effect of adipocyte-specific Smc5 knockout on glucose and lipid metabolism
Yuanping SHI ; Ling YE ; Meiling JIN ; Wenjiao ZHU
Chinese Journal of Diabetes 2024;32(6):443-449
Objective To investigate the effectsof adipocyte-specific Structural maintenance of chromosomes 5(Smc5)knockouton glucose and lipid metabolism in mice.Methods Adipocyte-specific Smc5 knockout mice(AKO mice)were constructed based onclustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9(CRISPR/Cas9)systems,and Smc5flox/flox mice(Flox mice)were used as controls.The Smc5 knockout efficiency of adipose tissue in mice was verified by qRT-PCR and Western blot.The body fat content was detected by dual energy X-ray absorptiometry(DEXA).The morphology of adipose tissue was observed by hematoxylin-eosin staining and the area distribution of adipocytes was calculated.TG,HDL-C,LDL-C,free fatty acid(FFA),intraperitoneal glucose tolerance test(IPGTT)and intraperitoneal insulin tolerance test(IPITT)were compared.Results The AKO mouse model of fat specific knockout of Smc5 gene was successfully constructed.Smc5 mRNA in groin fat(iWAT),epididymal fat(eWAT)and brown adipocyte(BAT)of AKO mice,body weight after 15 weeks,organ weight of iWAT at 31 weeks,organ weight of eWAT,organ weight of BAT,body weight,fat mass,fat mass/weight,LDL-C,and percentage of 15-minute blood glucose in IPITT were lower than those of Flox mice(P<0.05 or P<0.01).Conclusions Adipocyte-specific Smc5 gene knockout improves glucose and lipid metabolism by affecting adipose tissue production.

Result Analysis
Print
Save
E-mail