1.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
2.Occurrence characteristics of traditional Chinese medicine (TCM) root rot and prevention and control strategies against it under new situations.
Wei-Wei GAO ; Wei-Wei ZHANG ; Xi-Mei ZHANG ; Xiao-Lin JIAO ; Xiu WANG ; Jian-He WEI
China Journal of Chinese Materia Medica 2025;50(13):3561-3568
Medicinal plant underground diseases, typified by root rot, directly result in a significant reduction in both the yield and quality of traditional Chinese medicine(TCM) because of its hidden occurrence and difficulty in prevention and control. Prevention and control measures depending on chemical pesticides bring potential risks to the safety of TCM and easily cause environmental pollution. The introduction of the new version of Good Agricultural Practice for Chinese Crude Drugs(GAP) and the enhancement of pesticide residue limit standards for TCM and decoction pieces in Chinese Pharmacopoeia(2025 edition) have elevated the requirements for green and efficient disease prevention and control technologies of TCM. This paper provided a comprehensive overview of the advancements over the past two decades in the diversity of pathogens, characteristics and hazards associated with disease occurrence, the main prevention and control agents currently registered, and the prevention and control techniques for TCM root rot. In light of the environmental backdrop of global climate change and the increasing frequency of disastrous climates, coupled with the challenges encountered in root rot prevention and control amidst the new paradigm of large-scale and standardized cultivation of TCM, the paper proposed the key direction of basic research and the application strategy for new technologies that integrate "early prevention and control-soil health-digital monitoring", including precise pathogen identification and early disease diagnosis, exploration of host disease resistance mechanisms and disease-resistant breeding, field soil health and ecological regulation, monitoring of fungicide resistance and rational pesticide use, as well as the integration of digital technology and intelligent plant protection. The ultimate goal is to advance the application of green plant protection technology in TCM, thereby providing robust scientific and technological support to ensure the healthy and sustainable development of the TCM agriculture sector.
Plant Diseases/microbiology*
;
Plant Roots/microbiology*
;
Plants, Medicinal/growth & development*
;
Drugs, Chinese Herbal
;
Medicine, Chinese Traditional
3.Exploring the clinical implications of novel SRD5A2 variants in 46,XY disorders of sex development.
Yu MAO ; Jian-Mei HUANG ; Yu-Wei CHEN-ZHANG ; He LIN ; Yu-Huan ZHANG ; Ji-Yang JIANG ; Xue-Mei WU ; Ling LIAO ; Yun-Man TANG ; Ji-Yun YANG
Asian Journal of Andrology 2025;27(2):211-218
This study was conducted retrospectively on a cohort of 68 patients with steroid 5 α-reductase 2 (SRD5A2) deficiency and 46,XY disorders of sex development (DSD). Whole-exon sequencing revealed 28 variants of SRD5A2 , and further analysis identified seven novel mutants. The preponderance of variants was observed in exon 1 and exon 4, specifically within the nicotinamide adenine dinucleotide phosphate (NADPH)-binding region. Among the entire cohort, 53 patients underwent initial surgery at Sichuan Provincial People's Hospital (Chengdu, China). The external genitalia scores (EGS) of these participants varied from 2.0 to 11.0, with a mean of 6.8 (standard deviation [s.d.]: 2.5). Thirty patients consented to hormone testing. Their average testosterone-to-dihydrotestosterone (T/DHT) ratio was 49.3 (s.d.: 23.4). Genetic testing identified four patients with EGS scores between 6 and 9 as having this syndrome; and their T/DHT ratios were below the diagnostic threshold. Furthermore, assessments conducted using the crystal structure of human SRD5A2 have provided insights into the potential pathogenic mechanisms of these novel variants. These mechanisms include interference with NADPH binding (c.356G>C, c.365A>G, c.492C>G, and c.662T>G) and destabilization of the protein structure (c.727C>T). The c.446-1G>T and c.380delG variants were verified to result in large alterations in the transcripts. Seven novel variations were identified, and the variant database for the SRD5A2 gene was expanded. These findings contribute to the progress of diagnostic and therapeutic approaches for individuals with SRD5A2 deficiency.
Humans
;
3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics*
;
Disorder of Sex Development, 46,XY/blood*
;
Male
;
Membrane Proteins/genetics*
;
Child, Preschool
;
Child
;
Retrospective Studies
;
Adolescent
;
Female
;
Mutation
;
Testosterone/blood*
;
Infant
;
Dihydrotestosterone/blood*
4.Risk factors and development of a prediction model of enteral feeding intolerance in critically ill children.
Xia ZHOU ; Hong-Mei GAO ; Lin HUANG ; Hui-Wu HAN ; Hong-Ling HU ; You LI ; Ren-He YU
Chinese Journal of Contemporary Pediatrics 2025;27(3):321-327
OBJECTIVES:
To explore the risk factors of feeding intolerance (FI) in critically ill children receiving enteral nutrition (EN) and to construct a prediction nomogram model for FI.
METHODS:
A retrospective study was conducted to collect data from critically ill children admitted to the Pediatric Intensive Care Unit of Xiangya Hospital, Central South University, between January 2015 and October 2020. The children were randomly divided into a training set (346 cases) and a validation set (147 cases). The training set was further divided into a tolerance group (216 cases) and an intolerance group (130 cases). Multivariate logistic regression analysis was used to screen for risk factors for FI in critically ill children receiving EN. A nomogram was constructed using R language, which was then validated on the validation set. The model's discrimination, calibration, and clinical net benefit were evaluated using receiver operating characteristic curves, calibration curves, and decision curves.
RESULTS:
Duration of bed rest, shock, gastrointestinal decompression, use of non-steroidal anti-inflammatory drugs, and combined parenteral nutrition were identified as independent risk factors for FI in critically ill children receiving EN (P<0.05). Based on these factors, a nomogram prediction model for FI in critically ill children receiving EN was developed. The area under the receiver operating characteristic curve for the training set and validation set was 0.934 (95%CI: 0.906-0.963) and 0.852 (95%CI: 0.787-0.917), respectively, indicating good discrimination of the model. The Hosmer-Lemeshow goodness-of-fit test showed that the model had a good fit (χ 2=12.559, P=0.128). Calibration curve and decision curve analyses suggested that the model has high predictive efficacy and clinical application value.
CONCLUSIONS
Duration of bed rest, shock, gastrointestinal decompression, use of non-steroidal anti-inflammatory drugs, and combined parenteral nutrition are independent risk factors for FI in critically ill children receiving EN. The nomogram model developed based on these factors exhibits high predictive efficacy and clinical application value.
Humans
;
Critical Illness
;
Enteral Nutrition/adverse effects*
;
Male
;
Risk Factors
;
Female
;
Child, Preschool
;
Infant
;
Nomograms
;
Retrospective Studies
;
Child
;
Logistic Models
5.Cognitive function disparities among atrial fibrillation patients with varying comorbidities.
Mei-Qi ZHAO ; Ting SHEN ; Man-Lin ZHAO ; Jia-Xin LIU ; Mei-Lin XU ; Xin LI ; Liu HE ; Yu KONG ; Chang-Sheng MA
Journal of Geriatric Cardiology 2025;22(10):859-870
BACKGROUND:
Mild cognitive impairment (MCI) is common in atrial fibrillation (AF) patients and may develop earlier in those with multiple cardiovascular comorbidities, potentially impairing self-management and treatment adherence. This study aimed to characterize the prevalence and profile of MCI in AF patients, examine its associations with cardiovascular comorbidities, and assess how these comorbidities influence specific cognitive domains.
METHODS:
This cross-sectional study analyzed data from AF patients who underwent cognitive assessment between 2017 and 2021. Cognitive status was categorized as MCI or non-MCI based on the Montreal Cognitive Assessment. Associations between comorbidities and MCI were assessed by logistic regression, and cognitive domains were compared using the Mann-Whitney U test.
RESULTS:
Of 4136 AF patients (mean age: 64.7 ± 9.4 years, 64.7% male), 33.5% of patients had MCI. Among the AF patients, 31.2% of patients had coronary artery disease, 20.1% of patients had heart failure, and 18.1% of patients had hypertension. 88.7% of patients had left atrial enlargement, and 11.0% of patients had reduced left ventricular ejection fraction. Independent factors associated with higher MCI prevalence included older age (OR = 1.04, 95% CI: 1.03-1.05, P < 0.001), lower education level (OR = 1.51, 95% CI: 1.31-1.73, P < 0.001), hypertension (OR = 1.28, 95% CI: 1.07-1.52, P = 0.001), heart failure (OR = 1.24, 95% CI: 1.04-1.48, P = 0.020), and lower left ventricular ejection fraction (OR = 1.43, 95% CI: 1.04-1.98, P = 0.028). A higher CHA2DS2-VASc score (OR = 1.27, 95% CI: 1.22-1.33, P < 0.001; ≥ 2 points vs. < 2 points), and greater atherosclerotic cardiovascular disease burden (OR = 1.45, 95% CI: 1.02-2.08, P = 0.040; 2 types vs. 0 type) were linked to increased MCI risk. These above factors influenced various cognitive domains.
CONCLUSIONS
MCI is common in AF and closely associated with cardiovascular multimorbidity. Patients with multiple comorbidities are at higher risk, highlighting the importance of routine cognitive assessment to support self-management and integrated care.
6.Sini Powder Alleviates Stress Response and Suppresses Hepatocellular Carcinoma Development by Restoring Gut Microbiota.
Si MEI ; Zhe DENG ; Fan-Ying MENG ; Qian-Qian GUO ; He-Yun TAO ; Lin ZHANG ; Chang XI ; Qing ZHOU ; Xue-Fei TIAN
Chinese journal of integrative medicine 2025;31(9):802-811
OBJECTIVES:
To explore the underlying pharmacological mechanisms and its potential effects of Chinese medicine herbal formula Sini Powder (SNP) on hepatocellular carcinoma (HCC).
METHODS:
The active components of SNP and their in vivo distribution were identified using ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Construction of component-target-disease networks, protein-protein interaction network, Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, and molecular docking were employed to analyze the active components and anti-HCC mechanisms of SNP. Cell viability assay and wound healing assay were utilized to confirm the effect of SNP-containing serum (2.5%, 5.0%, 10%, 20%, and 40%), isoprenaline or propranolol (both 10, 100, and 1,000 µ mol/L) on proliferation and migration of HepG 2 or Huh7 cells. Meanwhile, the effect of isoprenaline or propranolol on the β 2 adrenergic receptor (ADRB2) mRNA expression on HepG2 cells were measured by real-time quantitative reverse transcription (RT-qPCR). Mice with subcutaneous tumors were either subjected to chronic restraint stress (CRS) followed by SNP administration (364 mg/mL) or directly treated with SNP (364 mg/mL). These two parallel experiments were performed to validate the effects of SNP on stress responses. Stress-related proteins and hormones were quantified using RT-qPCR, enzyme-linked immunosorbent assay, and immunohistochemistry. Metagenomic sequencing was performed to confirm the influence of SNP on the gut microbiota in the tumor-bearing CRS mice.
RESULTS:
The distribution of the 12 active components of SNP was confirmed in various tissues and feces. Network pharmacology analysis confirmed the anti-HCC effects of the 5 active components. The potential anti-HCC mechanisms of SNP may involve the epidermal growth factor receptor (EGFR), proto-oncogene tyrosine-protein kinase Src (SRC) and signal transducer and activator of transcription 3 (STAT3) pathways. SNP-containing serum inhibited the proliferation of HepG2 and Huh7 cells at concentrations of 2.5% and 5.0%, respectively, after 24 h of treatment. Furthermore, SNP suppressed tumor progression in tumor-bearing mice exposed to CRS. SNP treatment also downregulated the expressions of stress-related proteins and pro-inflammatory cytokines, primarily by modulating the gut microbiota. Specifically, the abundance of Alistipes and Prevotella, which belong to the phylum Bacteroidetes, increased in the SNP-treated group, whereas Lachnospira, in the phylum Firmicutes, decreased.
CONCLUSION
SNP can combat HCC by alleviating stress responses through the regulation of gut microbiota.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Liver Neoplasms/microbiology*
;
Carcinoma, Hepatocellular/microbiology*
;
Humans
;
Drugs, Chinese Herbal/therapeutic use*
;
Powders
;
Cell Proliferation/drug effects*
;
Mice
;
Molecular Docking Simulation
;
Cell Line, Tumor
;
Hep G2 Cells
;
Receptors, Adrenergic, beta-2/genetics*
;
Stress, Physiological/drug effects*
;
Cell Movement/drug effects*
;
Male
;
Protein Interaction Maps/drug effects*
;
Cell Survival/drug effects*
;
Proto-Oncogene Mas
7.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
8.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
9.Phenylpropanoids from roots of Berberis polyantha.
Dong-Mei SHA ; Shuai-Cong NI ; Li-Niu SHA-MA ; Hai-Xiao-Lin-Mo MA ; Xiao-Yong HE ; Bin HE ; Shao-Shan ZHANG ; Ying LI ; Jing WEN ; Yuan LIU ; Xin-Jia YAN
China Journal of Chinese Materia Medica 2025;50(6):1564-1568
The chemical constituents were systematically separated from the roots of Berberis polyantha by various chromatographic methods, including silica gel column chromatography, HP20 column chromatography, polyamide column chromatography, reversed-phase C_(18) column chromatography, and preparative high-performance liquid chromatography. The structures of the compounds were identified by physicochemical properties and spectroscopic techniques(1D NMR, 2D NMR, UV, MS, and CD). Four phenylpropanoids were isolated from the methanol extract of the roots of B. polyantha, and they were identified as(2R)-1-(4-hydroxy-3,5-dimethoxyphenyl)-1-propanone-O-β-D-glucopyranoside(1), methyl 4-hydroxy-3,5-dimethoxybenzoate(2),(+)-syringaresinol(3), and syringaresinol-4-O-β-D-glucopyranoside(4). Compound 1 was a new compound, and other compounds were isolated from this plant for the first time. The anti-inflammatory activity of these compounds was evaluated based on the release of nitric oxide(NO) in the culture of lipopolysaccharide(LPS)-induced RAW264.7 macrophages. At a concentration of 10 μmol·L~(-1), all the four compounds inhibited the LPS-induced release of NO in RAW264.7 cells, demonstrating potential anti-inflammatory properties.
Plant Roots/chemistry*
;
Animals
;
Mice
;
Berberis/chemistry*
;
RAW 264.7 Cells
;
Macrophages/immunology*
;
Drugs, Chinese Herbal/isolation & purification*
;
Nitric Oxide/metabolism*
;
Molecular Structure
;
Anti-Inflammatory Agents/isolation & purification*
10.Processing technology of calcined Magnetitum based on concept of QbD and its XRD characteristic spectra.
De-Wen ZENG ; Jing-Wei ZHOU ; Tian-Xing HE ; Yu-Mei CHEN ; Huan-Huan XU ; Jian FENG ; Yue YANG ; Xin CHEN ; Jia-Liang ZOU ; Lin CHEN ; Hong-Ping CHEN ; Shi-Lin CHEN ; Yuan HU ; You-Ping LIU
China Journal of Chinese Materia Medica 2025;50(9):2391-2403
Guided by the concept of quality by design(QbD), this study optimizes the calcination and quenching process of calcined Magnetitum and establishes the XRD characteristic spectra of calcined Magnetitum, providing a scientific basis for the formulation of quality standards. Based on the processing methods and quality requirements of Magnetitum in the Chinese Pharmacopoeia, the critical process parameters(CPPs) identified were calcination temperature, calcination time, particle size, laying thickness, and the number of vinegar quenching cycles. The critical quality attributes(CQAs) included Fe mass fraction, Fe~(2+) dissolution, and surface color. The weight coefficients were determined by combining Analytic Hierarchy Process(AHP) and the criteria importance though intercrieria correlation(CRITIC) method, and the calcination process was optimized using orthogonal experimentation. Surface color was selected as a CQA, and based on the principle of color value, the surface color of calcined Magnetitum was objectively quantified. The vinegar quenching process was then optimized to determine the best processing conditions. X-ray diffraction(XRD) was used to establish the characteristic spectra of calcined Magnetitum, and methods such as similarity evaluation, cluster analysis, and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to evaluate the quality of the spectra. The optimized calcined Magnetitum preparation process was found to be calcination at 750 ℃ for 1 h, with a laying thickness of 4 cm, a particle size of 0.4-0.8 cm, and one vinegar quenching cycle(Magnetitum-vinegar ratio 10∶3), which was stable and feasible. The XRD characteristic spectra analysis method, featuring 9 common peaks as fingerprint information, was established. The average correlation coefficient ranged from 0.839 5-0.988 1, and the average angle cosine ranged from 0.914 4 to 0.995 6, indicating good similarity. Cluster analysis results showed that Magnetitum and calcined Magnetitum could be grouped together, with similar compositions. OPLS-DA discriminant analysis identified three key characteristic peaks, with Fe_2O_3 being the distinguishing component between the two. The final optimized processing method is stable and feasible, and the XRD characteristic spectra of calcined Magnetitum was initially established, providing a reference for subsequent quality control and the formulation of quality standards for calcined Magnetitum.
X-Ray Diffraction/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Quality Control
;
Particle Size

Result Analysis
Print
Save
E-mail