1.6-Gingerol Induced Apoptosis and Cell Cycle Arrest in Glioma Cells via MnSOD and ERK Phosphorylation Modulation
Sher-Wei LIM ; Wei-Chung CHEN ; Huey-Jiun KO ; Yu-Feng SU ; Chieh-Hsin WU ; Fu-Long HUANG ; Chien-Feng LI ; Cheng Yu TSAI
Biomolecules & Therapeutics 2025;33(1):129-142
6-gingerol, a bioactive compound from ginger, has demonstrated promising anticancer properties across various cancer models by inducing apoptosis and inhibiting cell proliferation and invasion. In this study, we explore its mechanisms against glioblastoma multiforme (GBM), a notably aggressive and treatment-resistant brain tumor. We found that 6-gingerol crosses the blood-brain barrier more effectively than curcumin, enhancing its potential as a therapeutic agent for brain tumors. Our experiments show that 6-gingerol reduces cell proliferation and triggers apoptosis in GBM cell lines by disrupting cellular energy homeostasis. This process involves an increase in mitochondrial reactive oxygen species (mtROS) and a decrease in mitochondrial membrane potential, primarily due to the downregulation of manganese superoxide dismutase (MnSOD). Additionally, 6-gingerol reduces ERK phosphorylation by inhibiting EGFR and RAF, leading to G1 phase cell cycle arrest. These findings indicate that 6-gingerol promotes cell death in GBM cells by modulating MnSOD and ROS levels and arresting the cell cycle through the ERFR-RAF-1/MEK/ ERK signaling pathway, highlighting its potential as a therapeutic agent for GBM and setting the stage for future clinical research.
2.6-Gingerol Induced Apoptosis and Cell Cycle Arrest in Glioma Cells via MnSOD and ERK Phosphorylation Modulation
Sher-Wei LIM ; Wei-Chung CHEN ; Huey-Jiun KO ; Yu-Feng SU ; Chieh-Hsin WU ; Fu-Long HUANG ; Chien-Feng LI ; Cheng Yu TSAI
Biomolecules & Therapeutics 2025;33(1):129-142
6-gingerol, a bioactive compound from ginger, has demonstrated promising anticancer properties across various cancer models by inducing apoptosis and inhibiting cell proliferation and invasion. In this study, we explore its mechanisms against glioblastoma multiforme (GBM), a notably aggressive and treatment-resistant brain tumor. We found that 6-gingerol crosses the blood-brain barrier more effectively than curcumin, enhancing its potential as a therapeutic agent for brain tumors. Our experiments show that 6-gingerol reduces cell proliferation and triggers apoptosis in GBM cell lines by disrupting cellular energy homeostasis. This process involves an increase in mitochondrial reactive oxygen species (mtROS) and a decrease in mitochondrial membrane potential, primarily due to the downregulation of manganese superoxide dismutase (MnSOD). Additionally, 6-gingerol reduces ERK phosphorylation by inhibiting EGFR and RAF, leading to G1 phase cell cycle arrest. These findings indicate that 6-gingerol promotes cell death in GBM cells by modulating MnSOD and ROS levels and arresting the cell cycle through the ERFR-RAF-1/MEK/ ERK signaling pathway, highlighting its potential as a therapeutic agent for GBM and setting the stage for future clinical research.
3.6-Gingerol Induced Apoptosis and Cell Cycle Arrest in Glioma Cells via MnSOD and ERK Phosphorylation Modulation
Sher-Wei LIM ; Wei-Chung CHEN ; Huey-Jiun KO ; Yu-Feng SU ; Chieh-Hsin WU ; Fu-Long HUANG ; Chien-Feng LI ; Cheng Yu TSAI
Biomolecules & Therapeutics 2025;33(1):129-142
6-gingerol, a bioactive compound from ginger, has demonstrated promising anticancer properties across various cancer models by inducing apoptosis and inhibiting cell proliferation and invasion. In this study, we explore its mechanisms against glioblastoma multiforme (GBM), a notably aggressive and treatment-resistant brain tumor. We found that 6-gingerol crosses the blood-brain barrier more effectively than curcumin, enhancing its potential as a therapeutic agent for brain tumors. Our experiments show that 6-gingerol reduces cell proliferation and triggers apoptosis in GBM cell lines by disrupting cellular energy homeostasis. This process involves an increase in mitochondrial reactive oxygen species (mtROS) and a decrease in mitochondrial membrane potential, primarily due to the downregulation of manganese superoxide dismutase (MnSOD). Additionally, 6-gingerol reduces ERK phosphorylation by inhibiting EGFR and RAF, leading to G1 phase cell cycle arrest. These findings indicate that 6-gingerol promotes cell death in GBM cells by modulating MnSOD and ROS levels and arresting the cell cycle through the ERFR-RAF-1/MEK/ ERK signaling pathway, highlighting its potential as a therapeutic agent for GBM and setting the stage for future clinical research.
4.Exploration of differences in decoction phase state, material form, and crystal form between Glycyrrhizae Radix et Rhizoma-Gypsum Fibrosum and Glycyrrhizae Radix et Rhizoma-CaSO_4·2H_2O based on supramolecules of traditional Chinese medicine.
Yao-Zhi ZHANG ; Wen-Min PI ; Xin-Ru TAN ; Ran XU ; Xu WANG ; Ming-Yang XU ; Xue-Mei HUANG ; Peng-Long WANG
China Journal of Chinese Materia Medica 2025;50(2):412-421
With Glycyrrhizae Radix et Rhizoma-Gypsum Fibrosum drug pair as the research object, supramolecular chemistry of traditional Chinese medicine(TCM) was used to study differences between the compatibility of herbal medicine Glycyrrhizae Radix et Rhizoma with mineral medicine Gypsum Fibrosum and its main component CaSO_4·2H_2O, so as to preliminarily discuss the scientific connotation of compatibility of Gypsum Fibrosum in clinical application. A Malvern particle sizer, a scanning electron microscope(SEM), and a conductivity meter were used to observe and determine the physical properties such as microscopic morphology, particle size, and conductivity of Gypsum Fibrosum, CaSO_4·2H_2O, and water decoctions of them with Glycyrrhizae Radix et Rhizoma. An inductively coupled plasma optical emission spectrometer(ICP-OES) was employed to detect the inorganic metal elements in Glycyrrhizae Radix et Rhizoma-Gypsum Fibrosum and Glycyrrhizae Radix et Rhizoma-CaSO_4·2H_2O. Isothermal titration calorimetry(ITC) was conducted to quantify the interactions of Gypsum Fibrosum and CaSO_4·2H_2O with Glycyrrhizae Radix et Rhizoma. A Fourier transform infrared spectrometer(FTIR) was used to analyze the characteristic absorption peak change of Glycyrrhizae Radix et Rhizoma-Gypsum Fibrosum and Glycyrrhizae Radix et Rhizoma-CaSO_4·2H_2O. X-ray diffraction(XRD) was performed to determine the crystal structure and phase composition of Glycyrrhizae Radix et Rhizoma-Gypsum Fibrosum and Glycyrrhizae Radix et Rhizoma-CaSO_4·2H_2O. Further, glycyrrhizic acid(GA) was substituted for Glycyrrhizae Radix et Rhizoma to co-decoct with Gypsum Fibrosum, CaSO_4·2H_2O, and freeze-dried powder of their respective water decoctions. The results of XRD were used for verification analysis. The results showed that although CaSO_4·2H_2O is the main component of Gypsum Fibrosum, there were significant differences between their decoctions and between the decoctions of them with Glycyrrhizae Radix et Rhizoma. Specifically,(1) Both CaSO_4·2H_2O and Gypsum Fibrosum were amorphous fibrous. However, the particle size and conductivity were significantly different between the decoctions of CaSO_4·2H_2O and Gypsum Fibrosum alone.(2) Under SEM, Glycyrrhizae Radix et Rhizoma-CaSO_4·2H_2O was a hybrid system with various morphologies, while Glycyrrhizae Radix et Rhizoma-Gypsum Fibrosum presented uniform nanoparticles.(3) The particle sizes and conductivities of Glycyrrhizae Radix et Rhizoma-CaSO_4·2H_2O and Glycyrrhizae Radix et Rhizoma-Gypsum Fibrosum were significantly different and did not follow the same tendency as those of the decoctions of CaSO_4·2H_2O and Gypsum Fibrosum alone.(4) Compared with Glycyrrhizae Radix et Rhizoma-CaSO_4·2H_2O, Glycyrrhizae Radix et Rhizoma-Gypsum Fibrosum had stronger molecular binding ability and functional group structure change.(5) The crystal form was largely different between the freeze-dried powder of CaSO_4·2H_2O decoction and Gypsum Fibrosum decoction, and their crystal forms were also significantly different from those of the freeze-dried powder of Glycyrrhizae Radix et Rhizoma-CaSO_4·2H_2O and Glycyrrhizae Radix et Rhizoma-Gypsum Fibrosum decoctions. The reason for the series of differences is that Gypsum Fibrosum is richer in trace elements than CaSO_4·2H_2O. The XRD results of GA-Gypsum Fibrosum and GA-CaSO_4·2H_2O decoctions further prove the importance of trace elements in Gypsum Fibrosum for supramolecule formation. This research preliminarily reveals the influence of compatibility of Gypsum Fibrosum or CaSO_4·2H_2O on decoction phase state, material form, and crystal form, providing a basis for the rational clinical application of Gypsum Fibrosum.
Drugs, Chinese Herbal/chemistry*
;
Calcium Sulfate/chemistry*
;
Glycyrrhiza/chemistry*
;
Crystallization
;
Particle Size
;
Medicine, Chinese Traditional
;
Rhizome/chemistry*
5.Research progress on transcription factors and regulatory proteins of Salvia miltiorrhiza.
Wen XU ; Mei TIAN ; Ye SHEN ; Juan GUO ; Bao-Long JIN ; Guang-Hong CUI
China Journal of Chinese Materia Medica 2025;50(1):58-70
Salvia miltiorrhiza is a perennial herb of the genus Salvia(Lamiaceae). As one of the earliest medicinal plants to undergo molecular biology research, it has gradually become a model plant for molecular biology of medicinal plants. With the gradual analysis of the genome of S. miltiorrhiza and the biosynthetic pathways of its main active components tanshinone and salvianolic acids, the transcriptional regulation mediated by transcription factors and related regulatory proteins has gradually become a new research focus. Due to the lack of scientific and unified naming of transcription factors and different research indexes in different literature, this paper systematically sorted out the transcription factors in different literature with the genomes of DSS3 from selfing for three generations and bh2-7 from selfing for six generations as reference. In total, 73 transcription factors and related regulatory proteins belonging to 13 gene families were identified. The effects of overexpression or gene silencing experiments on tanshinone and salvianolic acids were also analyzed. This study unified the identified transcription factors, which laid a foundation for further constructing the regulatory networks of secondary metabolites and insect or stress resistance and improving the quality of medicinal materials by using global transcriptional regulation engineering.
Salvia miltiorrhiza/chemistry*
;
Plant Proteins/metabolism*
;
Gene Expression Regulation, Plant
;
Transcription Factors/metabolism*
;
Abietanes/metabolism*
6.Rapid characterization and identification of non-volatile components in Rhododendron tomentosum by UHPLC-Q-TOF-MS method.
Su-Ping XIAO ; Long-Mei LI ; Bin XIE ; Hong LIANG ; Qiong YIN ; Jian-Hui LI ; Jie DU ; Ji-Yong WANG ; Run-Huai ZHAO ; Yan-Qin XU ; Yun-Bo SUN ; Zong-Yuan LU ; Peng-Fei TU
China Journal of Chinese Materia Medica 2025;50(11):3054-3069
This study aimed to characterize and identify the non-volatile components in aqueous and ethanolic extracts of the stems and leaves of Rhododendron tomentosum by using sensitive and efficient ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry(UHPLC-Q-TOF-MS) combined with a self-built information database. By comparing with reference compounds, analyzing fragment ion information, searching relevant literature, and using a self-built information database, 118 compounds were identified from the aqueous and ethanolic extracts of R. tomentosum, including 35 flavonoid glycosides, 15 phenolic glycosides, 12 flavonoids, 7 phenolic acids, 7 phenylethanol glycosides, 6 tannins, 6 phospholipids, 5 coumarins, 5 monoterpene glycosides, 6 triterpenes, 3 fatty acids, and 11 other types of compounds. Among them, 102 compounds were reported in R. tomentosum for the first time, and 36 compounds were identified by comparing them with reference compounds. The chemical components in the ethanolic and aqueous extracts of R. tomentosum leaves and stems showed slight differences, with 84 common chemical components accounting for 71.2% of the total 118 compounds. This study systematically characterized and identified the non-volatile chemical components in the ethanolic and aqueous extracts of R. tomentosum for the first time. The findings provide a reference for active ingredient research, quality control, and product development of R. tomentosum.
Rhododendron/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Mass Spectrometry/methods*
;
Plant Leaves/chemistry*
7.Identification and expression analysis of B3 gene family in Panax ginseng.
Yu-Long WANG ; Ai-Min WANG ; Jing-Hui YU ; Si-Zhang LIU ; Ge JIN ; Kang-Yu WANG ; Ming-Zhu ZHAO ; Yi WANG ; Mei-Ping ZHANG
China Journal of Chinese Materia Medica 2025;50(16):4593-4609
Panax ginseng as a perennial herb of Araliaceae, exhibits pharmacological effects such as central nervous system stimulation, anti-tumor properties, and cardiovascular and cerebrovascular protection. The B3 gene family plays a crucial role in growth and development, antioxidant activity, stress resistance, and secondary metabolism regulation of plants and has been extensively studied in various plants. However, the identification and analysis of the B3 gene family in P. ginseng have not been reported. In this study, a total of 145 B3 genes(PgB3s) with complete open reading frames(ORF) were identified from P. ginseng and classified into five subfamilies based on domain types. Through correlation analysis with ginsenoside content, SNP/InDels analysis, and interaction analysis with key enzyme genes, 15 PgB3 transcripts were found to be significantly correlated with ginsenoside content and exhibited a close interaction network with key enzyme genes involved in ginsenoside biosynthesis, which indicated that these genes may participate in the regulation of ginsenoside biosynthesis. Additionally, this study found that PgB3 genes exhibited induced expression in response to methyl jasmonate(MeJA) stress, which aligned with the presence of abundant stress response elements in their promoters, confirming the important role of the B3 gene family in P. ginseng in stress resistance. The results of this study revealed the potential functions of PgB3 genes in ginsenoside biosynthesis and stress response, providing a significant theoretical basis for further research on the functions of PgB3 genes and their regulatory mechanisms.
Panax/metabolism*
;
Gene Expression Regulation, Plant
;
Plant Proteins/metabolism*
;
Ginsenosides/biosynthesis*
;
Multigene Family
;
Phylogeny
8.Icariin targets PDE5A to regulate viability, DNA synthesis and DNA damage of spermatogonial stem cells and improves reproductive capacity.
Tian-Long LIAO ; Cai-Mei HE ; Di XIAO ; Zhi-Rong ZHANG ; Zuping HE ; Xiao-Ping YANG
Asian Journal of Andrology 2025;27(4):543-549
Icariin is a pure compound derived from Epimedium brevicornu Maxim, and it helps the regulation of male reproduction. Nevertheless, the role and underlying mechanisms of Icariin in mediating male germ cell development remain to be clarified. Here, we have demonstrated that Icariin promoted proliferation and DNA synthesis of mouse spermatogonial stem cells (SSCs). Furthermore, surface plasmon resonance iron (SPRi) and molecular docking (MOE) assays revealed that phosphodiesterase 5A (PDE5A) was an important target of Icariin in mouse SSCs. Mechanically, Icariin decreased the expression level of PDE5A. Interestingly, hydrogen peroxides (H 2 O 2 ) enhanced the expression level of phosphorylation H2A.X (p-H2A.X), whereas Icariin diminished the expression level of p-H2A.X and DNA damage caused by H 2 O 2 in mouse SSCs. Finally, our in vivo animal study indicated that Icariin protected male reproduction. Collectively, these results implicate that Icariin targets PDE5A to regulate mouse SSC viability and DNA damage and improves male reproductive capacity. This study thus sheds new insights into molecular mechanisms underlying the fate decisions of mammalian SSCs and offers a scientific basis for the clinical application of Icariin in male reproduction.
Male
;
Animals
;
Flavonoids/pharmacology*
;
Mice
;
Cyclic Nucleotide Phosphodiesterases, Type 5/drug effects*
;
DNA Damage/drug effects*
;
Cell Survival/drug effects*
;
Cell Proliferation/drug effects*
;
Spermatogonia/drug effects*
;
Reproduction/drug effects*
;
Adult Germline Stem Cells/metabolism*
;
DNA Replication/drug effects*
9.Genetic and clinical characteristics of children with RAS-mutated juvenile myelomonocytic leukemia.
Yun-Long CHEN ; Xing-Chen WANG ; Chen-Meng LIU ; Tian-Yuan HU ; Jing-Liao ZHANG ; Fang LIU ; Li ZHANG ; Xiao-Juan CHEN ; Ye GUO ; Yao ZOU ; Yu-Mei CHEN ; Ying-Chi ZHANG ; Xiao-Fan ZHU ; Wen-Yu YANG
Chinese Journal of Contemporary Pediatrics 2025;27(5):548-554
OBJECTIVES:
To investigate the genomic characteristics and prognostic factors of juvenile myelomonocytic leukemia (JMML) with RAS mutations.
METHODS:
A retrospective analysis was conducted on the clinical data of JMML children with RAS mutations treated at the Hematology Hospital of Chinese Academy of Medical Sciences, from January 2008 to November 2022.
RESULTS:
A total of 34 children were included, with 17 cases (50%) having isolated NRAS mutations, 9 cases (27%) having isolated KRAS mutations, and 8 cases (24%) having compound mutations. Compared to children with isolated NRAS mutations, those with NRAS compound mutations showed statistically significant differences in age at onset, platelet count, and fetal hemoglobin proportion (P<0.05). Cox proportional hazards regression model analysis revealed that hematopoietic stem cell transplantation (HSCT) and hepatomegaly (≥2 cm below the costal margin) were factors affecting the survival rate of JMML children with RAS mutations (P<0.05); hepatomegaly was a factor affecting survival in the non-HSCT group (P<0.05).
CONCLUSIONS
Children with NRAS compound mutations have a later onset age compared to those with isolated NRAS mutations. At initial diagnosis, children with NRAS compound mutations have poorer peripheral platelet and fetal hemoglobin levels than those with isolated NRAS mutations. Liver size at initial diagnosis is related to the prognosis of JMML children with RAS mutations. HSCT can improve the prognosis of JMML children with RAS mutations.
Humans
;
Leukemia, Myelomonocytic, Juvenile/therapy*
;
Mutation
;
Male
;
Female
;
Child, Preschool
;
Retrospective Studies
;
Child
;
Infant
;
GTP Phosphohydrolases/genetics*
;
Membrane Proteins/genetics*
;
Adolescent
;
Hematopoietic Stem Cell Transplantation
;
Proportional Hazards Models
;
Proto-Oncogene Proteins p21(ras)/genetics*
;
Prognosis
10.Research Progress of Neutrophil Extracellular Traps in Lung Cancer.
Xu HAO ; Yilin FENG ; Anqi LU ; Ying SUN ; Jinchan XIA ; Xue MEI ; Long FENG ; Min JIANG ; Baiyan WANG ; Huitong YANG
Chinese Journal of Lung Cancer 2025;28(3):201-212
Neutrophil extracellular traps (NETs), intricate reticular structures released by activated neutrophils, play a pivotal regulatory role in the pathogenesis of malignant tumors. Lung cancer is one of the most prevalent malignancies globally, with persistently high incidence and mortality rates. Recent studies have revealed that NETs dynamically modulate the tumor microenvironment through unique pathological mechanisms, exhibiting complex immunoregulatory characteristics during the progression of lung cancer, and this discovery has increasingly become a focal point in tumor immunology research. This paper provides a comprehensive review of the latest advancements in NETs research related to lung cancer, offering an in-depth analysis of their impact on lung cancer progression, their potential diagnostic value, and the current state of research on targeting NETs for lung cancer prevention and treatment. The aim is to propose novel strategies to enhance therapeutic outcomes and improve the prognosis for lung cancer patients.
.
Extracellular Traps/immunology*
;
Humans
;
Lung Neoplasms/metabolism*
;
Neutrophils/metabolism*
;
Animals
;
Tumor Microenvironment

Result Analysis
Print
Save
E-mail