1.Expert consensus on the positioning of the "Three-in-One" Registration and Evaluation Evidence System and the value of orientation of the "personal experience"
Qi WANG ; Yongyan WANG ; Wei XIAO ; Jinzhou TIAN ; Shilin CHEN ; Liguo ZHU ; Guangrong SUN ; Daning ZHANG ; Daihan ZHOU ; Guoqiang MEI ; Baofan SHEN ; Qingguo WANG ; Xixing WANG ; Zheng NAN ; Mingxiang HAN ; Yue GAO ; Xiaohe XIAO ; Xiaobo SUN ; Kaiwen HU ; Liqun JIA ; Li FENG ; Chengyu WU ; Xia DING
Journal of Beijing University of Traditional Chinese Medicine 2025;48(4):445-450
Traditional Chinese Medicine (TCM), as a treasure of the Chinese nation, plays a significant role in maintaining public health. In 2019, the Central Committee of the Communist Party of China and the State Council proposed for the first time the establishment of a TCM registration and evaluation evidence system that integrates TCM theory, "personal experience" and clinical trials (referred to as the "Three-in-One" System) to promote the inheritance and innovation of TCM. Subsequently, the National Medical Products Administration issued several guiding principles to advance the improvement and implementation of this system. Owing to the complexity of its implementation, there are still differing understandings within the TCM industry regarding the positioning of the "Three-in-One" Registration and Evaluation Evidence System, as well as the connotation and value orientation of the "personal experience." To address this, Academician WANG Qi, President of the TCM Association, China International Exchange and Promotion Association for Medical and Healthcare and TCM master, led a group of academicians, TCM masters, TCM pharmacology experts and clinical TCM experts to convene a "Seminar on Promoting the Implementation of the ′Three-in-One′ Registration and Evaluation Evidence System for Chinese Medicinals." Through extensive discussions, an expert consensus was formed, clarifying the different roles of the TCM theory, "personal experience" and clinical trials within the system. It was further emphasized that the "personal experience" is the core of this system, and its data should be derived from clinical practice scenarios. In the future, the improvement of this system will require collaborative efforts across multiple fields to promote the high-quality development of the Chinese medicinal industry.
2.Expression of RAD18 in colon cancer and its correlation with PCNA
Bing ZHENG ; Ganggang SHI ; Mei HAN ; Shuai LI ; Linyue ZHENG ; Hui WANG
International Journal of Biomedical Engineering 2024;47(5):442-448
Objective:To investigate the expression of RAD18 in colon cancer and its correlation with proliferating cell nuclear antigen (PCNA).Methods:The glass slice of colon cancer tissues and adjacent normal tissues from patients (73 cases) who underwent surgical treatment at the Second Hospital of Tianjin Medical University from November 2013 to November 2023 were collected.The expression of RAD18 in colon cancer tissues and adjacent normal tissues was analyzed in the gene expression profiling interactive analysis (GEPIA) database and verified by immunohistochemical staining. The relationship between RAD18 expression and clinicopathological features of colon cancer patients was analyzed. HCT116 and HT29 cells were cultured in vitro, and the control group and transfection group ( transfected with RAD18 shRNA to knock down RAD18 ) were set up. The expression of RAD18 was evaluated by quantitative real-time PCR (qRT-PCR) and Western Blot. The effect of RAD18 on colon cancer cell proliferation was explored using clonogenic assays and cell counting Kit-8 (CCK-8) assays. The correlation between RAD18 and PCNA was investigated by GEPIA and immunohistochemical staining. Results:The GEPIA database analysis showed that the expression of RAD18 in colon cancer tissue ( n = 275) was significantly higher than that in adjacent normal tissues ( n = 349, P < 0.05). RAD18 was expressed at higher levels in colon cancer tissue than that in adjacent normal tissues and was not expressed at high levels in the latter. The expression of RAD18 was closely related to tumor size in the low-expression group and high-expression group of patients ( P = 0.015) but was not related to age ( P = 0.115), gender ( P = 0.665), or tumor differentiation ( P = 0.733). Compared with the control group, the expressions of RAD18 in the transfection group of HCT116 and HT29 cells were both reduced (both P < 0.05). Compared with the control group, the clone cell number and absorbance ( A) value of HCT116 and HT29 cells in the transfection group were decreased (all P < 0.05). GEPIA database analysis showed that RAD18 was correlated with PCNA ( R = 0.27, P < 0.05), and the expression level of PCNA was higher in colon cancer tissues than in adjacent normal tissues. Conclusions:RAD18 is expressed at a higher level in colon cancer tissues and may promote colorectal cancer proliferation by affecting PCNA.
3.The tumor-suppressive mechanism of hepatocellular carcinoma by baicalein-targeted CCNA2-regulated M2-type macrophages
Li CHENG ; Xin-Yi ZHANG ; Lei GUO ; Jun GE ; Han-Mei JIANG ; Jiang-Xue DI ; Yi LIU
Chinese Pharmacological Bulletin 2024;40(11):2104-2112
Aim To investigate the regulatory and an-ti-tumour effects of baicalein on mouse hepatocellular carcinoma cells and mouse macrophage co-cultures.Methods In vitro experiments,mouse hepatocellular carcinoma cell H22 and mouse macrophage RAW264.7 were randomly divided into a blank group and different concentrations of gradient administration group(5,10,20,40,80 mg·L-1),and the cell activity was detec-ted by CCK-8 assay;the two kinds of cells were co-cultured in Transwell chambers of 6-well plates for 48 h,and were randomly divided into the blank,model,and low,medium,and high baicalin groups(10,20,40 mg·L-1).Cell scratch and invasion assays,ELISA kits were used to detect TNF-α and IL-10 factor levels,and Western blot was used to determine the lev-els of CCNA2 and related proteins.The levels of TNF-α and IL-10 were detected by ELISA kits,and the ex-pression levels of CCNA2 and related proteins were de-tected by Western blot.In vivo experiments,H22 sub-cutaneous tumour model was established and randomly divided into the blank,positive,model and drug-ad-ministered groups.Mouse spleen,thymus and tumour indices were counted,and immunohistochemistry and Western blot were employed to detect the expression levels of CCNA2 and macrophage-related indexes in tumour tissues.Results Different doses of baicalein had a significant inhibitory effect on H22 and no signif-icant cytotoxicity on M0-type RAW264.7;the mor-phology of M0-type RAW264.7 cells was changed after co-culture,TNF-α was elevated and IL-10 was re-duced in the baicalein group;the results of the cell scratch assay and invasion assay found that baicalein inhibited M2-type macrophage invasion and metastasis;Arg1,p-p38/p38,p-stat3/stat3,N-cadherin,CCNA2 decreased significantly and Inos and E-cadherin in-creased significantly in the baicalein group;CCNA2,CD206 expression decreased significantly and CD86 expression increased significantly in the administered group.Conclusions Baicalein reverses M2-type mac-rophage polarisation and pro-carcinogenic functions and inhibits M2-type macrophage migration and invasion by modulating M2-type macrophage-related signalling pathways.
4.Early clinical efficacy study on the efficacy of a three-stage conservative Chinese medicine external treatment for a-cute lateral ankle ligament injuries
Qing-Xin HAN ; Lei ZHANG ; Jun-Ying WU ; Xiao-Hua LIU ; Yan LI ; Tian-Xin CHEN ; Yu YI ; Mei-Qi YU
China Journal of Orthopaedics and Traumatology 2024;37(10):997-1002
Objective To evaluate the clinical effect of a new three-phase Chinese medicine(CM)external treatment for acute lateral ankle ligament injuries.Methods From July to December 2023,64 patients with acute lateral ankle ligament in-juries were randomly assigned to receive either the new three-phase CM external treatment combined with the POLICE(pro-tect,optimal loading,ice,compression,elevation)treatment(observation group)or the POLICE treatment(control group),with 32 cases in each group.The observation group consisted of 17 males and 15 females,with an average age of(30.59±3.10)years old ranging from 25 to 36 years old,while the control group included 14 males and 18 females,with an average age of(30.03±3.19)years old ranging from 24 to 37 years old.Visual analogue scale(VAS)evaluation and Figure of 8 measurement were used to evaluate the degree of ankle joint pain and swelling of the subjects at the initial enrollment and after 1 week and sixth weeks of treatment.At the same time,the American Orthopaedic Foot and Ankle Society(AOFAS)and Karlsson Ankle Function Score System were used to evaluate the improvement of ankle joint function in patients at all stages.MRI imaging was employed to observe the degree of biological healing of the anterior talofibular ligament,with the signal to noise ratio(SNR)in-dicating the level of healing.A lower SNR suggests better ligament healing,as it represents lower water content in the ligament.Results All patients completed a 6-week follow-up.There was no significant difference in VAS,AOFAS score and Karlsson score between the two groups before treatment(P>0.05).After 1 week and 6 weeks of treatment,the VAS,AOFAS score and Karlsson score of the two groups were significantly improved(P<0.05).After 1 week of treatment,the VAS score of the obser-vation group(3.21±0.87)was lower than that of the control group(4.21±1.50),and the difference was statistically significant(P<0.05).After 1 weeks of treatment,the AOFAS and Karlsson scores[(50.84±4.70)points,(49.97±4.00)points]of the ob-servation group were higher than those[(46.91±5.56)points,(46.66±5.36)points]of the control group(P<0.05).MRI images showed that after 6 weeks of treatment,the SNR value of the observation group was significantly lower than that of the control group,and the difference was statistically significant(SNR of the observation group was 75.25±16.59,the contral gruop was 85.81±15.55),(P<0.05).Conclusion Compared with the control group,the new three-phase CM external treatment is signifi-cantly effective in reducing pain and swelling,enhancing ligament repair quality,and promoting functional recovery of the an-kle joint in patients with acute lateral malleolar ligament injuries.
5.Establishment of a method for rescuing coxsackievirus B3 by transfecting RNA
Mei LI ; Xinling WANG ; Qinqin SONG ; Miaomiao CHI ; Jun HAN ; Juan SONG
Chinese Journal of Experimental and Clinical Virology 2024;38(4):468-473
Objective:To establish a method via transfection of RNA to rescue coxsackievirus B3 B3 (CVB3).Methods:The efficiency of CVB3 genomic RNA extraction from three nucleic acid extraction reagents, Qiagen 57704, Qiagen 52904, and Trizol, and the transfection efficiency of viral RNA with two transfection reagents (Lipofectamine 2000 and Lipofectamine 3000) were compared. The efficiency of CVB3 rescue in Vero cells and HEK293T cells to determine the optimal conditions for rescuing CVB3.Results:The number of phagolysosomes for virus rescue by Qiagen 57704, Qiagen 52904, and Tizol kit extracted RNA was 13.33±1.53, 150±15.00, and 1.67±0.58, respectively, and there was a statistically significant difference in the efficiency of the three method of extracting CVB3 RNA to rescue the viral RNA ( F=268.920, P<0.001); The number of phage spots formed by Lipofectamine3000 and Lipofectamine2000 transfected RNA was 74.50±3.00 and 22.00±5.00, respectively, and the difference was statistically significant ( P<0.01); Qiagen 52904 reagent extracted CVB3 nucleic acid more efficiently than Qiagen 57704 and Trizol reagents; the transfection efficiency of transfection reagent Lipofectamine 3000 was 3 times more than than that of Lipofectamine 2000, and the efficiency of virus rescue of CVB3 in HEK293T cell culture was higher than that of HeLa and Vero cells, and the copy numbers of the three kinds of viruses rescuing the virus were 6.09×10 7±8.00×10 5, 5.18×10 3±6.17×10 2 and 0, the difference was statistically significant ( F=17 383.644, P<0.001), and it was also found that the efficiency of virus rescue could be improved by multiple elution when extracting RNA. Conclusions:In this study, we successfully established the method of transfecting RNA to rescue CVB3, which can effectively improve the efficiency of virus rescue by choosing Qiagen 52904 nucleic acid extraction kit, increasing the number of elution, using Lipofectamine 3000 transfection reagent, and transfection of HEK293T cells.
6.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
7.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
8.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
9.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.
10.Changing distribution and resistance profiles of Klebsiella strains in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Chuyue ZHUO ; Yingyi GUO ; Chao ZHUO ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):418-426
Objective To understand the changing distribution and antimicrobial resistance profiles of Klebsiella strains in 52 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Methods Antimicrobial susceptibility testing was carried out according to the unified CHINET protocol.The susceptibility results were interpreted according to the breakpoints in the Clinical & Laboratory Standards Institute(CLSI)M100 document.Results A total of 241,549 nonduplicate Klebsiella strains were isolated from 2015 to 2021,including Klebsiella pneumoniae(88.0%),Klebsiella aerogenes(5.8%),Klebsiella oxytoca(5.7%),and other Klebsiella species(0.6%).Klebsiella strains were mainly isolated from respiratory tract(48.49±5.32)%.Internal medicine(22.79±3.28)%,surgery(17.98±3.10)%,and ICU(14.03±1.39)%were the top 3 departments where Klebsiella strains were most frequently isolated.K.pneumoniae isolates showed higher resistance rate to most antimicrobial agents compared to other Klebsiella species.Klebsiella isolates maintained low resistance rates to tigecycline and polymyxin B.ESBLs-producing K.pneumoniae and K.oxytoca strains showed higher resistance rates to all the antimicrobial agents tested compared to the corresponding ESBLs-nonproducing strains.The K.pneumoniae and carbapenem-resistant K.pneumoniae(CRKP)strains isolated from ICU patients demonstrated higher resistance rates to majority of the antimicrobial agents tested than the strains isolated from non-ICU patients.The CRKP strains isolated from adult patients had higher resistance rates to most of the antimicrobial agents tested than the corresponding CRKP strains isolated from paediatric patients.Conclusions The prevalence of carbapenem-resistant strains in Klebsiella isolates increased greatly from 2015 to 2021.However,the Klebsiella isolates remained highly susceptible to tigecycline and polymyxin B.Antimicrobial resistance surveillance should still be strengthened for Klebsiella strains.


Result Analysis
Print
Save
E-mail