1.6-Gingerol Induced Apoptosis and Cell Cycle Arrest in Glioma Cells via MnSOD and ERK Phosphorylation Modulation
Sher-Wei LIM ; Wei-Chung CHEN ; Huey-Jiun KO ; Yu-Feng SU ; Chieh-Hsin WU ; Fu-Long HUANG ; Chien-Feng LI ; Cheng Yu TSAI
Biomolecules & Therapeutics 2025;33(1):129-142
6-gingerol, a bioactive compound from ginger, has demonstrated promising anticancer properties across various cancer models by inducing apoptosis and inhibiting cell proliferation and invasion. In this study, we explore its mechanisms against glioblastoma multiforme (GBM), a notably aggressive and treatment-resistant brain tumor. We found that 6-gingerol crosses the blood-brain barrier more effectively than curcumin, enhancing its potential as a therapeutic agent for brain tumors. Our experiments show that 6-gingerol reduces cell proliferation and triggers apoptosis in GBM cell lines by disrupting cellular energy homeostasis. This process involves an increase in mitochondrial reactive oxygen species (mtROS) and a decrease in mitochondrial membrane potential, primarily due to the downregulation of manganese superoxide dismutase (MnSOD). Additionally, 6-gingerol reduces ERK phosphorylation by inhibiting EGFR and RAF, leading to G1 phase cell cycle arrest. These findings indicate that 6-gingerol promotes cell death in GBM cells by modulating MnSOD and ROS levels and arresting the cell cycle through the ERFR-RAF-1/MEK/ ERK signaling pathway, highlighting its potential as a therapeutic agent for GBM and setting the stage for future clinical research.
2.6-Gingerol Induced Apoptosis and Cell Cycle Arrest in Glioma Cells via MnSOD and ERK Phosphorylation Modulation
Sher-Wei LIM ; Wei-Chung CHEN ; Huey-Jiun KO ; Yu-Feng SU ; Chieh-Hsin WU ; Fu-Long HUANG ; Chien-Feng LI ; Cheng Yu TSAI
Biomolecules & Therapeutics 2025;33(1):129-142
6-gingerol, a bioactive compound from ginger, has demonstrated promising anticancer properties across various cancer models by inducing apoptosis and inhibiting cell proliferation and invasion. In this study, we explore its mechanisms against glioblastoma multiforme (GBM), a notably aggressive and treatment-resistant brain tumor. We found that 6-gingerol crosses the blood-brain barrier more effectively than curcumin, enhancing its potential as a therapeutic agent for brain tumors. Our experiments show that 6-gingerol reduces cell proliferation and triggers apoptosis in GBM cell lines by disrupting cellular energy homeostasis. This process involves an increase in mitochondrial reactive oxygen species (mtROS) and a decrease in mitochondrial membrane potential, primarily due to the downregulation of manganese superoxide dismutase (MnSOD). Additionally, 6-gingerol reduces ERK phosphorylation by inhibiting EGFR and RAF, leading to G1 phase cell cycle arrest. These findings indicate that 6-gingerol promotes cell death in GBM cells by modulating MnSOD and ROS levels and arresting the cell cycle through the ERFR-RAF-1/MEK/ ERK signaling pathway, highlighting its potential as a therapeutic agent for GBM and setting the stage for future clinical research.
3.6-Gingerol Induced Apoptosis and Cell Cycle Arrest in Glioma Cells via MnSOD and ERK Phosphorylation Modulation
Sher-Wei LIM ; Wei-Chung CHEN ; Huey-Jiun KO ; Yu-Feng SU ; Chieh-Hsin WU ; Fu-Long HUANG ; Chien-Feng LI ; Cheng Yu TSAI
Biomolecules & Therapeutics 2025;33(1):129-142
6-gingerol, a bioactive compound from ginger, has demonstrated promising anticancer properties across various cancer models by inducing apoptosis and inhibiting cell proliferation and invasion. In this study, we explore its mechanisms against glioblastoma multiforme (GBM), a notably aggressive and treatment-resistant brain tumor. We found that 6-gingerol crosses the blood-brain barrier more effectively than curcumin, enhancing its potential as a therapeutic agent for brain tumors. Our experiments show that 6-gingerol reduces cell proliferation and triggers apoptosis in GBM cell lines by disrupting cellular energy homeostasis. This process involves an increase in mitochondrial reactive oxygen species (mtROS) and a decrease in mitochondrial membrane potential, primarily due to the downregulation of manganese superoxide dismutase (MnSOD). Additionally, 6-gingerol reduces ERK phosphorylation by inhibiting EGFR and RAF, leading to G1 phase cell cycle arrest. These findings indicate that 6-gingerol promotes cell death in GBM cells by modulating MnSOD and ROS levels and arresting the cell cycle through the ERFR-RAF-1/MEK/ ERK signaling pathway, highlighting its potential as a therapeutic agent for GBM and setting the stage for future clinical research.
4.Impact of Wenyang lishui formula on ventricular remodeling in rats with pulmonary hypertension-induced right heart failure
Sijian FENG ; Yan HUANG ; Aimin XING ; Mei YUAN ; Yafang LIU ; Weiming WANG
China Pharmacy 2025;36(20):2531-2536
OBJECTIVE To discuss the impact of Wenyang lishui formula on ventricular remodeling in rats with pulmonary hypertension-induced right heart failure (RHF) based on the Hippo/Yes-associated protein (YAP) signaling pathway. METHODS Ten rats were randomly selected as the control group. The remaining 63 rats were given a single intraperitoneal injection of monocrotaline to establish the pulmonary hypertension-induced RHF model. The 50 rats that successfully underwent the model establishment were randomly divided into the RHF group, low-dose group of Wenyang lishui formula (4.25 g/kg), high-dose group of the Wenyang lishui formula (17.00 g/kg), furosemide group (20 mg/kg), and high-dose group of Wenyang lishui formula+ Hippo/YAP signaling pathway activator group (17.00 g/kg of Δ Wenyang lishui formula+16 mg/kg of PY-60), with 10 rats in each group. The rats in each group were given the corresponding drug solution or normal saline by gavage or/andtail vein injection, once a day, for 4 consecutive weeks. During the experiment, the general conditions of the rats in each group were observed; after the last administration, the right ventricular diameter, right atrial diameter, end-diastolic volume, pulmonary artery blood flow acceleration time (PAAT) and its ratio to ejection time (ET) (PAAT/ET), pulmonary artery pressure and its ratio to pulmonary arterial flow velocity (pulmonary artery pressure/velocity) were measured. The plasma levels of brain natriuretic peptide and angiotensin Ⅱ (Ang Ⅱ) were detected. The pathological changes of the right ventricular tissue were observed, and the collagen volume fraction, the phosphorylation levels of the large tumor suppressor 1/2 (LATS1/2) and YAP, and the protein expression of the transcriptional coactivator of PDZ-binding motif (TAZ) were also detected. RESULTS Compared with the RHF group, the rats in Wenyang lishui formula low-dose and high-dose groups showed improved hair color, movement, diet, and mental state. The atrophy of right ventricular myocardial cells, the increase of inflammatory cells, collagen deposition, and hypertrophy of myocardial fibers were significantly alleviated. The right ventricular internal diameter, right atrial internal diameter, end-diastolic volume, pulmonary artery pressure, pulmonary artery pressure/velocity, the plasma levels of brain natriuretic peptide and AngⅡ , collagen volume fraction, the phosphorylation level of YAP and protein expression of TAZ were significantly decreased, while the PAAT, PAAT/ET and the phosphorylation level of LATS1/2 were significantly increased (P<0.05). PY-60 could significantly reverse the improvement effects of high-dose Wenyang lishui formula on the above quantitative indicators (P< 0.05). CONCLUSIONS Wenyang lishui formula can restore the right heart function of pulmonary hypertension-induced RHF rats, reduce their pulmonary artery pressure, alleviate the pathological changes in their cardiac tissues, and the above effects may be related to the activation of Hippo expression and the inhibition of YAP phosphorylation.
5.Population pharmacokinetics of duloxetine in Chinese healthy subjects
Zhi-Wei HUANG ; Rui WANG ; Yi-Min YU ; Yan LI ; Yi-Feng SHEN ; Hua-Fang LI ; Yu-Mei WEI
The Chinese Journal of Clinical Pharmacology 2024;40(4):598-602
Objective To establish a population pharmacokinetic(PPK)model of duloxetine in Chinese subjects.Methods Based on the data of intensive sampling of duloxetine hydrochloride enteric coated tablets in 36 healthy subjects after single/multiple administrations,a PPK model of duloxetine was established using NONMEM software.The effects of gender,age,body weight,albumin,serum creatinine,glutamic pyruvic transaminase and dose on pharmacokinetic parameters were investigated by stepwise forward and backward methods.Model validation includes goodness of fit,visual prediction check and bootstrap.Results The PPK model of duloxetine was a one compartment model with first-order elimination and the absorption characteristics were described by the transit model,and the dose was a covariate of clearance.The inter-individual variability of clearance,volume of distribution,mean transit time and number of transit compartments were 54.71%,56.86%,27.30%and 87.71%,respectively.Conclusion The transit model more reasonably describes the absorption characteristics of duloxetine in Chinese subjects.
6.Sema3A secreted by sensory nerve induces bone formation under mechanical loads.
Hongxiang MEI ; Zhengzheng LI ; Qinyi LV ; Xingjian LI ; Yumeng WU ; Qingchen FENG ; Zhishen JIANG ; Yimei ZHOU ; Yule ZHENG ; Ziqi GAO ; Jiawei ZHOU ; Chen JIANG ; Shishu HUANG ; Juan LI
International Journal of Oral Science 2024;16(1):5-5
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling. Here, we focused on the role of Semaphorin 3A (Sema3A), expressed by sensory nerves, in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement (OTM) model. Firstly, bone formation was activated after the 3rd day of OTM, coinciding with a decrease in sensory nerves and an increase in pain threshold. Sema3A, rather than nerve growth factor (NGF), highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM. Moreover, in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells (hPDLCs) within 24 hours. Furthermore, exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload. Mechanistically, Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway, maintaining mitochondrial dynamics as mitochondrial fusion. Therefore, Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation, both as a pain-sensitive analgesic and a positive regulator for bone formation.
Humans
;
Bone Remodeling
;
Cell Differentiation
;
Osteogenesis
;
Semaphorin-3A/pharmacology*
;
Trigeminal Ganglion/metabolism*
7.Identification and anti-inflammatory activity of chemical constituents and a pair of new monoterpenoid enantiomers from the fruits of Litsea cubeba
Mei-lin LU ; Wan-feng HUANG ; Yu-ming HE ; Bao-lin WANG ; Fu-hong YUAN ; Ting ZHANG ; Qi-ming PAN ; Xin-ya XU ; Jia HE ; Shan HAN ; Qin-qin WANG ; Shi-lin YANG ; Hong-wei GAO
Acta Pharmaceutica Sinica 2024;59(5):1348-1356
Eighteen compounds were isolated from the methanol extract of the fruits of
8.Two new isoflavones from Dalbergia rimosa Roxb.
Wei-yu WANG ; Wen-jiao CHEN ; Mei-fang HUANG ; Cheng-sheng LU ; Xu FENG ; Chen-yan LIANG ; Jian-hua WEI
Acta Pharmaceutica Sinica 2024;59(7):2053-2057
Studies on chemical constituents in the rhizome of
9.Research progress on endogenous small-molecule phenolics and the proposal of "phenolomics"
Hong-qian KUI ; Chuan-xin LIU ; Qiang WANG ; Hai-feng ZHAI ; Jian-mei HUANG
Acta Pharmaceutica Sinica 2024;59(2):336-349
Small-molecule phenolic substances widely exist in animals and plants, and have some shared biological activities. The metabolism of phenylalanine and tyrosine in the human body, and especially the metabolism of catecholamine neurotransmitters, produces endogenous small-molecule phenols. Endogenous small-molecule phenolic substances are functionally related to the important physiological processes and the occurrence of mental diseases in humans and some animals, which are systematically sorts and summarized in this review. Integrating the previous experimental research and literature analysis on natural small-molecule phenols by our research group, the understanding of the hypothesis that "small-molecule phenol are pharmacological signal carriers" was deepened. Based on above, the concept of "phenolomics" was further proposed, analyzed the research direction and research content which can bring into the knowledge framework of phenolomics. The induction of phenolomics will provide wider perspectives on explaining the pharmacological mechanism of drugs, discovering new drug targets, and finding biomarkers of mental diseases.
10.Investigation on a suspected outbreak of carbapenem-resistant Acinetobacter baumannii nosocomial infection in an intensive care unit
Mei HUANG ; Xiaobo GUI ; Ya YANG ; Feng LU ; Juanxiu QIN ; Yan LI ; Shuyi ZHANG ; Wenqin ZHOU ; Xiaofang FU ; Haiqun BAN
Shanghai Journal of Preventive Medicine 2024;36(5):435-438
ObjectiveTo investigate a suspected outbreak of carbapenem-resistant Acinetobacter baumannii (CRAB) nosocomial infection in an intensive care unit (ICU) and provide scientific evidence for prevention and control of multi-drug resistant nosocomial infection. MethodsClinical and epidemiological data of 4 patients with CRAB infection were retrospectively investigated in the ICU of Renji Hospital in November 2021. Environmental hygiene monitoring and multilocus sequence typing (MLST) were conducted and intervention measures were taken. ResultsA total of 4 cases with CRAB infection were identified, among which 1 case was determined to be community-acquired and3 cases were hospital-acquired. The isolated strains shared the same drug resistance, and were all classified into ST368 type. In the surface and hand samples (n=40), 2 CRAB strains were detected in the air filter beside the bed of the first case, with a detection rate of 5%. After adopting comprehensive prevention and control strategies, including environmental cleaning and disinfection, hand hygiene, staff management and training, and supervision, no similar case with CRAB infection was found. ConclusionThis suspected outbreak of CRAB nosocomial infection may be induced by inadequate environmental cleaning and disinfection, and inadequate implementation of hand hygiene. Timely identification, investigation, and targeted measures remain crucial to effective control of possible nosocomial infection.

Result Analysis
Print
Save
E-mail