1.Endomitosis: a new cell fate in the cell cycle leading to polyploidy in megakaryocytes and hepatocytes.
Qi-Hua HUA ; Xuechun ZHANG ; Ruifeng TIAN ; Zhigang SHE ; Zan HUANG
Journal of Zhejiang University. Science. B 2025;26(9):843-862
Megakaryocytes and hepatocytes are unique cells in mammals that undergo polyploidization through endomitosis in terminal differentiation. Many polyploidization regulators and underlying mechanisms have been reported, most of which are tightly coupled with development, organogenesis, and cell differentiation. However, the nature of endomitosis, which involves successful entry into and exit from mitosis without complete cytokinesis, has not yet been fully elucidated. We highlight that endomitosis is a new cell fate in the cell cycle, and tetraploidy is a critical stage at the bifurcation of cell fate decision. This review summarizes the recent research progress in this area and provides novel insights into how cells manipulate mitosis toward endomitosis. Endomitotic cells can evade the tetraploidy restrictions and proceed to multiple rounds of the cell cycle. This knowledge not only deepens our understanding of endomitosis as a fundamental biological process but also offers new perspectives on the physiological and pathophysiological implications of polyploidization.
Hepatocytes/physiology*
;
Megakaryocytes/physiology*
;
Humans
;
Polyploidy
;
Animals
;
Cell Cycle/physiology*
;
Cell Differentiation
;
Mitosis/physiology*
2.Effect of monoamine neurotransmitter on megakaryocytopoiesis and platelet functions.
Hui-Ying SHU ; Xiao-Jing LI ; Jie YU ; Jie-Yu YE ; Mo YANG
Journal of Experimental Hematology 2014;22(1):223-228
The nervous system directly regulates immunity through neurotransmitter receptors expressed on immune cells to participate in host defense and body reparation. Expression of neurotransmitter receptors on blood cells provides important evidence for a direct functional link between the nervous and hematopoietic systems. Our previous studies showed that 5-hydroxytryptamine, as a monoamine neurotransmitter, plays an important role in regulating megakaryocytopoiesis. This review summarizes recent findings of the effect of monoamine neurotransmitter on megakaryocytopoiesis and platelet function, focusing on the receptor expression on hematopoietic stem cells, megakaryocytes/platelets and their functions in order to explore the intrinsic relation of nervous system and hematopoietic system. Based on the existing research results, we find that the monoamine neurotransmitter participates in regulation of megakaryocytopoiesis, and affects on aggregation and functions activation of platelets. Moreover, it has a close link with the specific regulatory factor of megakaryocytopoiesis-TPO. Thus those results also support the "brain-bone marrow-blood-axis" viewpoint of some researchers. At present, the study of the nervous system regulating hematopoiesis is still in its infancy, the exact mechanism remains to be further studied.
Biogenic Monoamines
;
physiology
;
Blood Platelets
;
physiology
;
Humans
;
Megakaryocytes
;
cytology
;
Neurotransmitter Agents
;
physiology
;
Platelet Function Tests
3.A two-phase culture system for megakaryocyte differentiation of human mobilized peripheral blood CD34+ cells.
Qing LUO ; Guanbin SONG ; Chengyu ZOU
Journal of Biomedical Engineering 2010;27(2):373-378
In our study, a two-phase culture system was developed to acquire large amount of CD41+ and polyploidy cells. Human mobilized peripheral blood CD34+ (PB CD34+) cells were first cultured in expansion medium (Cocktail or CC100 medium) for 3,4,5 or 6 days, and then cultured in megakaryocytic differentiation medium containing TPO and SCF for additional 7, 8 or 9 days. Cell expansion, morphology, CD41+ cell percentage and DNA content were investigated to evaluate the protocol. The result showed that more CD41+ and polyploidy cells could be obtained following the two-phase culture with Cocktail medium than with CC100. Moreover, with 3 days expansion in Cocktail medium plus 7 days in differentiation medium, the initial CD 34+ cells obtained 16-fold expansion of CD41+ cells and 3-fold expansion of polyploidy cells, such obtained level being significantly higher than that of culturing cells with only one step in TPO or TPO+SCF. We conclude that with the two-phase culture system, PB CD34+ cells can expand and differentiate to more CD41+ and polyploidy cells than those cultured only in accordance to the one-stage culture protocol, so a new and highly efficient megakaryocyte differentiation model for megakaryocyte and platelet related researches is provided already.
Antigens, CD34
;
blood
;
Blood Cells
;
cytology
;
Cell Culture Techniques
;
methods
;
Cell Differentiation
;
physiology
;
Colony-Stimulating Factors
;
physiology
;
Hematopoietic Stem Cell Mobilization
;
methods
;
Humans
;
Megakaryocytes
;
cytology
;
Stem Cells
;
cytology
4.Roles of platelet and its regulating factors in immune vasculitis in young rabbits.
Xin TIAN ; Xiang-Ling HE ; Yi-Bing FANG ; Run-Ying ZOU
Chinese Journal of Contemporary Pediatrics 2009;11(10):850-853
OBJECTIVETo study the roles of platelet (PLT) and its regulating factors, megakaryocyte, thrombopoietin (TPO) and transforming growth factor beta1 (TGF-beta1), in immune vasculitis in young rabbits.
METHODSAn experimental model of Kawasaki disease (KD) of weanling rabbits was reproduced by bovine serum. PLT count, total number and differentiating count of megakaryocyte, and serum TPO and TGF-beta1 levels were measured 0, 4, 8, 12, 16, 20, 24 and 28 days after KD induction. Pathological analysis of coronary artery, liver, spleen, kidney and brain was performed 17 and 28 days after KD induction.
RESULTSIn the KD group, PLT count, the total number of megakaryocyte, and the middle board megakaryocyte percentage increased 12, 16, 20, 24 and 28 days; serum TPO level increased 8, 12, 16, 20, 24 and 28 days; serum TGF-beta1 level increased 16, 20, 24 and 28 days after KD induction compared with those in the normal control group (p<0.05). The pathological examinations of coronary artery, liver, spleen, kidney and brain showed severe inflammatory injuries of tiny arteries and small/medium-sized arteries 17 and 28 days after KD induction, respectively in the KD group. The aortas were showed as mild inflammatory injuries.
CONCLUSIONSPLT, megakaryocyte, TPO and TGF-beta1 participate in the pathogenesis of KD, and they may play an important role in the injuries of immune vasculitis. This suggests that they may serve as markers for the assessment of severity in KD.
Animals ; Blood Platelets ; physiology ; Disease Models, Animal ; Humans ; Megakaryocytes ; physiology ; Mucocutaneous Lymph Node Syndrome ; etiology ; Rabbits ; Thrombopoietin ; physiology ; Transforming Growth Factor beta1 ; physiology ; Vasculitis ; etiology ; immunology ; pathology
5.Effect of mesenchymal stem/progenitor cells on differentiation of cord blood CD34+ cells towards megakaryocytes.
Shu CHEN ; Bing DAI ; Fa-Ming ZHU ; Ji HE ; Ying XIANG ; Li-Xing YAN
Chinese Journal of Applied Physiology 2008;24(1):77-80
AIMIn order to investigate the effect of mesenchymal stem/progenitor cells on proliferation and differentiation towards megakaryocytes of CD34+ cells from human umbilical cord blood in vitro.
METHODSAfter mesenchymal stem/progenitor cells were advancely planted in DMEM medium and grown up to 80%, then the CD34+ cells were added to culture with mesenchymal stem/ progenitor cells or without mesenchymal stem/progenitor cells in DMEM for 14 days with TPO + IL-3 + SCF, TPO + IL-3 + SCF + IL-11 respectively. After cultured for 14 days, mononuclear cells (MNCs) were counted by automatic cell analyzer. The number of CD41+ cells and platelets were detected by flow cytometry. Platelets function were assessed through platelet aggregation test which was induced by thrombin.
RESULTSAs compared with the control group, the number of MNCs of co-culture system was not increased significantly (P > 0.05), but the number of CD4+ cells and platelets were increased significantly (P < 0.05). The platelets were aggregated by thrombin induced which could be seen in microscope or flow cytometry.
CONCLUSIONIt is concluded that mesenchymal stem/progenitor cells may be promoted to induce the cord blood CD34+ cells to differentiate towards megakaryocyte in the culture medium.
Antigens, CD34 ; metabolism ; Bone Marrow Cells ; cytology ; Cell Differentiation ; physiology ; Cells, Cultured ; Fetal Blood ; cytology ; Humans ; Megakaryocytes ; cytology ; Mesenchymal Stromal Cells ; cytology ; physiology
6.Comparison of the effect of Angelica polysaccharide, platelet-derived growth factor and thrombopoietin on megakaryocytopoiesis.
Shu MO ; Jie YU ; Mo YANG ; Zhi-guang LI ; Gui-xia LI ; Lei ZHANG
Chinese Journal of Pediatrics 2008;46(1):45-48
OBJECTIVETo investigate the effect of Angelica polysaccharide (APS), platelet-derived growth factor (PDGF) and thrombopoietin (TPO) on the proliferation and apoptosis of human megakaryocytic cell line M-07e.
METHODSCell count and the viability testing of M-07e cells (trypan blue exclusion assay) were performed at 24 hours, 48 hours and 72 hours after treatment with APS, PDGF or TPO. Three apoptosis related flow cytometric assays including Annexin V, Caspase-3 and JC-1 were performed to determine apoptotic rate of each group at 72 hours after the treatment.
RESULTSAfter the incubation, the number of M-07e cells in the APS, PDGF and TPO group increased and the viabilities of the three groups were significantly higher than the control group (P < 0.05). The dead cells in the APS, PDGF and TPO group were (19.41 +/- 7.59)%, (21.38 +/- 7.25)% and (18.77 +/- 8.00)%, respectively by flow cytometry using Annexin V method, which were significantly lower compared to the control group (34.33 +/- 5.46)%. The expression of the activated caspase-3 in the group of APS, PDGF and TPO were (12.27 +/- 5.18)%, (12.39 +/- 6.26)% and (13.75 +/- 8.25)%, the APS and PDGF group decreased significantly compared to the control group (18.92 +/- 6.09)%. The ratio of total cell deaths in the APS, PDGF and TPO group were (23.64 +/- 6.69)%, (28.00 +/- 10.05)% and (27.99 +/- 8.99)%, the ratio in APS group decreased significantly compared to the control group (39.48 +/- 11.86)% by JC-1 method. Differences between APS and PDGF groups and between APS and TPO groups were not statistically significant.
CONCLUSIONAPS, PDGF and TPO have similar effect in stimulating proliferation and inhibiting serum-free-culture induced apoptosis of M-07e cells.
Angelica ; chemistry ; Apoptosis ; drug effects ; Benzimidazoles ; pharmacology ; Carbocyanines ; pharmacology ; Caspase 3 ; metabolism ; Cell Proliferation ; drug effects ; Flow Cytometry ; Fluorescent Dyes ; pharmacology ; Humans ; Megakaryocytes ; drug effects ; physiology ; Organic Chemicals ; pharmacology ; Platelet-Derived Growth Factor ; pharmacology ; Thrombopoiesis ; Thrombopoietin ; pharmacology
7.Role of antiapoptotic Bcl-X(L) in megakaryocyte differentiation and maturation.
Lei ZHANG ; Ren-chi YANG ; Shi-hong LU ; Bin LIU ; He REN ; Zhi-bo HAN ; Zhong-chao HAN
Acta Academiae Medicinae Sinicae 2007;29(3):374-378
OBJECTIVETo investigate the role of antiapoptotic Bcl-x(L) protein in megakaryocyte differentiation and maturation.
METHODSRNA interference was used to block the expression of Bcl-x(L) when K562 cells were induced to differentiate into megakaryocyte (CD61 + cells) by PDBu, and the expression of Bcl-x(L) was evaluated with flow cytometry and reverse transcription polymerase chain reaction (RT-PCR). The CD34 + cell fraction was positively isolated by using the MiniMACS system from normal bone marrow. Immunochemical staining and flow cytometry were used to detect the expression of Bcl-x(L) in the differentiation (CD41 + cells) of CD34 + cells induced by trombopoietin (TPO).
RESULTSAmong K562 cells induced by PDBu, the percentage of CD6L + cells rapidly increased in 24 hours and maintained at a high positive level in 72 hours. When exposured to si-Bcl-x(L), the percentage of CD6 1 + cells only slightly increased in 72 hours. The expression of Bcl-x(L) mRNA was significantly decreased after transfection compared with that of control group, and Bcl-x(L) protein expression decreased correspondingly. After the CD34 + bone marrow cells having been treated with TPO for 5 days to 20 days, the Bcl-x(L)-megakaryocytes increased as the culture time prolonged, and there was a strong expression of Bcl-x(L) in immature megakaryocyte and an obviously decreased expression in degenerating megakaryocytes maturation.
CONCLUSIONSIncreased expression of antiapoptotic Bcl-x(L) may be essential to mature megakaryocyte. The down-regulation of antiapoptotic Bcl-x(L) in mature megakaryocyte may be crucial to platelets formation.
Cell Differentiation ; Humans ; K562 Cells ; Megakaryocytes ; physiology ; RNA Interference ; bcl-X Protein ; biosynthesis ; genetics ; physiology
8.Formation of platelets from cord blood CD34+ cells-derived megakaryocytes induced by S-nitrosoglutathione.
Bing DAI ; Ji HE ; Shu CHEN ; Jin-Hui LIU ; Fei QIN ; Fa-Ming ZHU ; Li-Xing YAN
Acta Physiologica Sinica 2006;58(5):490-493
To investigate the effect of S-nitrosoglutathione (GSNO), a nitric oxide donor, on platelet production from megakaryocytes differentiated from cord blood CD34(+) cells in vitro, the CD34 (+) cells from eight fresh umbilical cord blood samples by a high-gradient magnetic cell sorting (MACS) system were cultured in serum-free medium for 14 d with thrombopoietin (TPO) 50 ng/ml, IL-3 10 ng/ml, stem cell factor (SCF) 50 ng/ml and rHuGM-CSF 20 ng/ml. Then, CD61 (+) cells were purified by MACS system from these CD34 (+) cells, and were cultured in serum-free medium supplemented with TPO 50 ng/ml, IL-3 10 ng/ml and SCF 50 ng/ml in the presence (treatment group) and absence (control group) of GSNO for 30 min or 2 h. Platelet-sized particles were counted by flow cytometry; megakaryocyte structure was detected by scanning electron microscope. Aggregation of the thrombin-induced platelet particle was observed under inversion microscope. cGMP was assessed by commercial ELISA kit. The results showed that, compared with the control group, the number of platelet-sized particles significantly increased (P<0.05) in the treatment group, in which megakaryocytes presented significant pseudopod formation and extensive membrane blebbing. The platelet particle aggregation could be observed under microscope after thrombin induction. cGMP activity was significantly increased after treatment with GSNO (P<0.05). These results propose that GSNO can facilitate platelet production from megakaryocyte, and it may be partly through cGMP pathway.
Antigens, CD34
;
analysis
;
Blood Platelets
;
cytology
;
Cell Differentiation
;
drug effects
;
Cyclic GMP
;
blood
;
Female
;
Fetal Blood
;
cytology
;
Hematopoiesis
;
drug effects
;
Hematopoietic Stem Cells
;
cytology
;
Humans
;
Megakaryocytes
;
cytology
;
Nitric Oxide
;
physiology
;
Platelet Aggregation
;
drug effects
;
Pregnancy
;
S-Nitrosoglutathione
;
pharmacology
9.Effect of 5-hydroxtryptamine on megakaryocytopoiesis--review.
Yuan-Shan CHENG ; Yuan-Sheng LIU ; Mo YANG
Journal of Experimental Hematology 2006;14(2):403-407
5-hydroxtryptamine (5-HT, serotonin) has been recognized not only as a neurotransmitter and vasoactive agent, but also as a growth factor. 5-HT mainly binds to 5-HT(2) receptors or 5-HT(1) receptors on cell surface to stimulate cell proliferation through Ras or MAPK pathway in many cell types. It has been reported that 5-HT stimulates megakaryocytopoiesis via 5-HT receptors. The possible mechanism of 5-HT on the proliferation and differentiation of megakaryocytes (MK) has been discussed in this review article. In early stage of megakaryocytopoiesis, 5-HT may bind to 5-HT(2B) receptor on megakaryocytes, and promotes their proliferation and differentiation. In the late stage, 5-HT may involve in the platelet release procedure by inducing nitric oxide (NO) synthesis via 5-HT(2A) receptors. 5-HT can also antagonize the apoptotic effect induced by thrombospondin-1 (TSP-1) which is a platelet alpha granule protein and has synergic effect with platelet-derived growth factor (PDGF) to enhance megakaryocytes proliferation. Therefore, 5-HT is likely to be an important substance in the feedback regulation of thrombopoiesis. In this review the 5-HT and its receptors, 5-HT as cell growth factor, pathway of 5-HT stimulating cell proliferation and influance of 5-HT on MK-progenitor cells were summarized.
Humans
;
Megakaryocytes
;
physiology
;
Receptors, Serotonin
;
metabolism
;
Receptors, Serotonin, 5-HT2
;
metabolism
;
Serotonin
;
metabolism
;
pharmacology
;
Thrombopoiesis
;
physiology
;
Thrombopoietin
;
physiology
10.In vitro differentiation into megakaryocytes and generation of platelets from CD34+ cells of umbilical cord blood.
Xin LI ; Fang-ping CHEN ; Jing LIU ; Xin-hua WU ; Tie-bin JIANG ; Xue-yuan TANG
Journal of Central South University(Medical Sciences) 2006;31(5):776-781
OBJECTIVE:
To induce hematopoietic progenitor/stem cells of umbilical cord blood to differentiate into mature megakaryocytes and platelets in vitro and to investigate the mechanism of production of platelets.
METHODS:
The CD34+ cells were sorted from umbilical cord blood by magnetic activated cell sorting (MACS) and then cultured in vitro with optimized medium to be differentiated into mature megakaryocytes and platelets. The cultured cells and the platelet-like particles were isolated from the culture and were checked by the fluorescence-activated cell sorter (FACS), immunohistochemistry assays, light microscope,electron microscope and platelet aggregation tests.
RESULTS:
The cultured megakaryocytes were detected with proplatelets and both the cultured cells and the platelet-sized particles were found to have the same structure with the normal megakaryocytes and platelets by light and electron microscope. The immunohistochemistry assays revealed the cultured cells expressed GP II b III a with a positivity of 95% which was a special antigen for platelets and megakaryocytes. Culture-derived platelet-sized particles aggregated in response to thrombin as the plasma derived-platelets did. The cultured platelets had the same positivity of CD41 as the platelets from platelet rich plasma.
CONCLUSION
The hematopoietic progenitor/stem cells can be induced to differentiate into purified and mature megakaryocytes and platelets. It provides a practical way to study the mechanism of platelets production.
Antigens, CD34
;
metabolism
;
Blood Platelets
;
cytology
;
Cell Differentiation
;
physiology
;
Cells, Cultured
;
Fetal Blood
;
cytology
;
metabolism
;
Hematopoietic Stem Cells
;
cytology
;
metabolism
;
Humans
;
Megakaryocytes
;
cytology

Result Analysis
Print
Save
E-mail