1.The regulatory relationship between RagA and Nprl2 in Drosophila gut development.
Chunmei NIU ; Jianwen GUAN ; Guoqiang MENG ; Ying ZHOU ; Youheng WEI
Chinese Journal of Biotechnology 2023;39(4):1747-1758
The gastrointestinal tract is the largest digestive organ and the largest immune organ and detoxification organ, which is vital to the health of the body. Drosophila is a classic model organism, and its gut is highly similar to mammalian gut in terms of cell composition and genetic regulation, therefore can be used as a good model for studying gut development. target of rapmaycin complex 1 (TORC1) is a key factor regulating cellular metabolism. Nprl2 inhibits TORC1 activity by reducing Rag GTPase activity. Previous studies have found that nprl2 mutated Drosophila showed aging-related phenotypes such as enlarged foregastric and reduced lifespan, which were caused by over-activation of TORC1. In order to explore the role of Rag GTPase in the developmental defects of the gut of nprl2 mutated Drosophila, we used genetic hybridization combined with immunofluorescence to study the intestinal morphology and intestinal cell composition of RagA knockdown and nprl2 mutated Drosophila. The results showed that RagA knockdown alone could induce intestinal thickening and forestomach enlargement, suggesting that RagA also plays an important role in intestinal development. Knockdown of RagA rescued the phenotype of intestinal thinning and decreased secretory cells in nprl2 mutants, suggesting that Nprl2 may regulate the differentiation and morphology of intestinal cells by acting on RagA. Knockdown of RagA did not rescue the enlarged forestomach phenotype in nprl2 mutants, suggesting that Nprl2 may regulate forestomach development and intestinal digestive function through a mechanism independent of Rag GTPase.
Animals
;
Drosophila/genetics*
;
Mechanistic Target of Rapamycin Complex 1/metabolism*
;
Mammals/metabolism*
;
Carrier Proteins
;
Tumor Suppressor Proteins/metabolism*
;
Drosophila Proteins/genetics*
2.Regulatory function and mechanism of autophagy on osteoclast.
Jian-Sen MIAO ; Xiang-Yang WANG ; Hai-Ming JIN
China Journal of Orthopaedics and Traumatology 2023;36(4):357-363
Osteoclast (OC) is multinucleated, bone-resorbing cells originated from monocyte/macrophage lineage of cells, excessive production and abnormal activation of which could lead to many bone metabolic diseases, such as osteoporosis, osteoarthritis, etc. Autophagy, as a highly conserved catabolic process in eukaryotic cells, which plays an important role in maintaining cell homeostasis, stress damage repair, proliferation and differentiation. Recent studies have found that autophagy was also involved in the regulation of osteoclast generation and bone resorption. On the one hand, autophagy could be induced and activated by various factors in osteocalsts, such as nutrient deficiency, hypoxia, receptor activator of nuclear factor(NF)-κB ligand(RANKL), inflammatory factors, wear particles, microgravity environment, etc, different inducible factors, such as RANKL, inflammatory factors, wear particles, could interact with each other and work together. On the other hand, activated autophagy is involved in regulating various stages of osteoclast differentiation and maturation, autophagy could promote proliferation of osteoclasts, inhibiting apoptosis, and promoting differentiation, migration and bone resorption of osteoclast. The classical autophagy signaling pathway mediated by mammalian target of rapamycin complex 1(mTORC1) is currently a focus of research, and it could be regulated by upstream signalings such as phosphatidylinositol 3 kinase(PI-3K)/protein kinase B (PKB), AMP-activated protein kinase(AMPK). However, the paper found that mTORC1-mediated autophagy may play a bidirectional role in regulating differentiation and function of osteoclasts, and its underlying mechanism needs to be further ciarified. Integrin αvβ3 and Rab protein families are important targets for autophagy to play a role in osteoclast migration and bone resorption, respectively. In view of important role of osteoclast in the occurrence of various bone diseases, it is of great significance to elucidate the role of autophagy on osteoclast and its mechanism for the treatment of various bone diseases. The autophagy pathway could be used as a new therapeutic target for the treatment of clinical bone diseases such as osteoporosis.
Humans
;
Osteoclasts
;
Bone Resorption/metabolism*
;
Cell Differentiation
;
NF-kappa B/metabolism*
;
Autophagy
;
Osteoporosis
;
Mechanistic Target of Rapamycin Complex 1/metabolism*
;
RANK Ligand/metabolism*
3.Research progress in diseases associated with genetic variants of GATOR1 complex.
Meng YUAN ; Huan LUO ; Xueyi RAO ; Jing GAN
Chinese Journal of Medical Genetics 2023;40(7):887-891
The GATOR1 complex is located at the upstream of the mTOR signal pathway and can regulate the function of mTORC1. Genetic variants of the GATOR1 complex are closely associated with epilepsy, developmental delay, cerebral cortical malformation and tumor. This article has reviewed the research progress in diseases associated with genetic variants of the GATOR1 complex, with the aim to provide a reference for the diagnosis and treatment of such patients.
Humans
;
GTPase-Activating Proteins/metabolism*
;
Signal Transduction/genetics*
;
Mechanistic Target of Rapamycin Complex 1/metabolism*
;
Epilepsy/genetics*
;
Neoplasms
4.mTORC1 signaling pathway regulates tooth repair.
Honghong LIU ; Yu YUE ; Zhiyun XU ; Li GUO ; Chuan WU ; Da ZHANG ; Lingfei LUO ; Wenming HUANG ; Hong CHEN ; Deqin YANG
International Journal of Oral Science 2023;15(1):14-14
Tooth germ injury can lead to abnormal tooth development and even tooth loss, affecting various aspects of the stomatognathic system including form, function, and appearance. However, the research about tooth germ injury model on cellular and molecule mechanism of tooth germ repair is still very limited. Therefore, it is of great importance for the prevention and treatment of tooth germ injury to study the important mechanism of tooth germ repair by a tooth germ injury model. Here, we constructed a Tg(dlx2b:Dendra2-NTR) transgenic line that labeled tooth germ specifically. Taking advantage of the NTR/Mtz system, the dlx2b+ tooth germ cells were depleted by Mtz effectively. The process of tooth germ repair was evaluated by antibody staining, in situ hybridization, EdU staining and alizarin red staining. The severely injured tooth germ was repaired in several days after Mtz treatment was stopped. In the early stage of tooth germ repair, the expression of phosphorylated 4E-BP1 was increased, indicating that mTORC1 is activated. Inhibition of mTORC1 signaling in vitro or knockdown of mTORC1 signaling in vivo could inhibit the repair of injured tooth germ. Normally, mouse incisors were repaired after damage, but inhibition/promotion of mTORC1 signaling inhibited/promoted this repair progress. Overall, we are the first to construct a stable and repeatable repair model of severe tooth germ injury, and our results reveal that mTORC1 signaling plays a crucial role during tooth germ repair, providing a potential target for clinical treatment of tooth germ injury.
Animals
;
Mice
;
Mechanistic Target of Rapamycin Complex 1/pharmacology*
;
Signal Transduction
;
Tooth/metabolism*
;
Tooth Germ/metabolism*
;
Odontogenesis
5.Hepatocyte growth factor protects pulmonary endothelial barrier against oxidative stress and mitochondria-dependent apoptosis.
Shanshan MENG ; Feiping XIA ; Jingyuan XU ; Xiwen ZHANG ; Ming XUE ; Mingyuan GU ; Fengmei GUO ; Yingzi HUANG ; Haibo QIU ; Yi YANG
Chinese Medical Journal 2022;135(7):837-848
BACKGROUND:
Pulmonary microvascular endothelial cells (PMVECs) were not complex, and the endothelial barrier was destroyed in the pathogenesis progress of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Previous studies have demonstrated that hepatocyte growth factor (HGF), which was secreted by bone marrow mesenchymal stem cells, could decrease endothelial apoptosis. We investigated whether mTOR/STAT3 signaling acted in HGF protective effects against oxidative stress and mitochondria-dependent apoptosis in lipopolysaccharide (LPS)-induced endothelial barrier dysfunction and ALI mice.
METHODS:
In our current study, we introduced LPS-induced PMEVCs with HGF treatment. To investigate the effects of mammalian target of rapamycin (mTOR)/signal transducer and activator of transcription 3 (STAT3) pathway in endothelial oxidative stress and mitochondria-dependent apoptosis, mTOR inhibitor rapamycin and STAT3 inhibitor S3I-201 were, respectively, used to inhibit mTOR/STAT3 signaling. Moreover, lentivirus vector-mediated mTORC1 (Raptor) and mTORC2 (Rictor) gene knockdown modifications were introduced to evaluate mTORC1 and mTORC1 pathways. Calcium measurement, reactive oxygen species (ROS) production, mitochondrial membrane potential and protein, cell proliferation, apoptosis, and endothelial junction protein were detected to evaluate HGF effects. Moreover, we used the ALI mouse model to observe the mitochondria pathological changes with an electron microscope in vivo.
RESULTS:
Our study demonstrated that HGF protected the endothelium via the suppression of ROS production and intracellular calcium uptake, which lead to increased mitochondrial membrane potential (JC-1 and mitochondria tracker green detection) and specific proteins (complex I), raised anti-apoptosis Messenger Ribonucleic Acid level (B-cell lymphoma 2 and Bcl-xL), and increased endothelial junction proteins (VE-cadherin and occludin). Reversely, mTOR inhibitor rapamycin and STAT3 inhibitor S3I-201 could raise oxidative stress and mitochondria-dependent apoptosis even with HGF treatment in LPS-induced endothelial cells. Similarly, mTORC1 as well as mTORC2 have the same protective effects in mitochondria damage and apoptosis. In in vivo experiments of ALI mouse, HGF also increased mitochondria structural integrity via the mTOR/STAT3 pathway.
CONCLUSION
In all, these reveal that mTOR/STAT3 signaling mediates the HGF suppression effects to oxidative level, mitochondria-dependent apoptosis, and endothelial junction protein in ARDS, contributing to the pulmonary endothelial survival and barrier integrity.
Animals
;
Apoptosis
;
Calcium/metabolism*
;
Endothelial Cells/metabolism*
;
Endothelium/metabolism*
;
Hepatocyte Growth Factor/metabolism*
;
Lipopolysaccharides/pharmacology*
;
Mammals/metabolism*
;
Mechanistic Target of Rapamycin Complex 1/metabolism*
;
Mechanistic Target of Rapamycin Complex 2/metabolism*
;
Mice
;
Mitochondria/metabolism*
;
Oxidative Stress
;
Reactive Oxygen Species/metabolism*
;
Respiratory Distress Syndrome
;
Sirolimus/pharmacology*
;
TOR Serine-Threonine Kinases/metabolism*
6.Vascular endothelial growth factor induces inflammatory injury of pancreatic tissue by activating autophagy in hyperlipidemic acute pancreatitis rats.
Ya-Ping WANG ; Zhen ZHAO ; Li TANG ; Zhi-Yong ZHU
Acta Physiologica Sinica 2022;74(2):225-236
This study was to investigate the changes of autophagy in pancreatic tissue cells from hyperlipidemic acute pancreatitis (HLAP) rats and the molecular mechanism of autophagy to induce inflammatory injury in pancreatic tissue cells. Male Sprague Dawley (SD) rats were intraperitoneally injected with caerulein to establish acute pancreatitis (AP) model and then given a high fat diet to further prepare HLAP model. The HLAP rats were treated with autophagy inducer rapamycin or inhibitor 3-methyladenine. Pancreatic acinar (AR42J) cells were treated with caerulein to establish HLAP cell model. The HLAP cell model were treated with rapamycin or transfected with vascular endothelial growth factor (VEGF) siRNA. The inflammatory factors in serum and cell culture supernatant were detected by ELISA method. The histopathological changes of pancreatic tissue were observed by HE staining. The changes of ultrastructure and autophagy in pancreatic tissue were observed by electron microscopy. The expression levels of Beclin-1, microtubule- associated protein light chain 3-II (LC3-II), mammalian target of rapamycin complex 1 (mTORC1), and VEGF were measured by immunohistochemistry and Western blot. The results showed that, compared with control group, the autophagy levels and inflammatory injury of pancreatic tissue cells from HLAP model rats were obviously increased, and these changes were aggravated by rapamycin treatment, but alleviated by 3-methyladenine treatment. In HLAP cell model, rapamycin aggravated the autophagy levels and inflammatory injury, whereas VEGF siRNA transfection increased mTORC1 protein expression, thus alleviating the autophagy and inflammatory injury of HLAP cell model. These results suggest that VEGF-induced autophagy plays a key role in HLAP pancreatic tissue cell injury, and interference with VEGF-mTORC1 pathway can reduce the autophagy levels and alleviate the inflammatory injury. The present study provides a new target for prevention and treatment of HLAP.
Acute Disease
;
Animals
;
Autophagy
;
Ceruletide/adverse effects*
;
Male
;
Mammals/metabolism*
;
Mechanistic Target of Rapamycin Complex 1
;
Microtubule-Associated Proteins/metabolism*
;
Pancreatitis
;
RNA, Small Interfering/genetics*
;
Rats
;
Rats, Sprague-Dawley
;
Sirolimus/adverse effects*
;
Vascular Endothelial Growth Factor A/genetics*
7.Ethoxysanguinarine directly targets CIP2A to inhibit proliferation and induce autophagy of SGC7901/DDP cells.
Fang WAN ; Miao TAN ; Yu-Chen XIANG ; Xue-Wen LIU ; Peng PENG ; Ying LIU
China Journal of Chinese Materia Medica 2022;47(21):5890-5899
This study aims to investigate the effect of ethoxysanguinarine(Eth) on cisplatin(DDP)-resistant human gastric cancer cells and decipher the underlying mechanism. The human gastric cancer cell line SGC7901 and the DDP-resistant cell line SGC7901/DDP were used as the cell models. Western blot was employed to determine the expression levels of multidrug resistance-related proteins, and methyl thiazolyl tetrazolium(MTT) assay to detect the proliferation of SGC7901 and SGC7901/DDP cells exposed to DDP. After treatment with different concentrations of Eth, the proliferation of SGC7901 and SGC7901/DDP cells was detected by MTT assay, trypan blue exclusion assay, colony formation assay, and high-content imaging and analysis system. The apoptosis of SGC7901/DDP cells was detected by flow cytometry with Annexin V-FITC/PI staining. GFP-LC3 transfection was carried out to detect the effect of Eth on the autophagy of SGC7901/DDP cells. The expression levels of the multidrug resistance-related protein P-glycoprotein(P-gp), the apoptosis-related proteins [caspase-9, caspase-3, and poly(ADP-ribose) polymerase(PARP)], the autophagy-related protein light chain 3-Ⅱ(LC3-Ⅱ), the key effectors [mammalian target of rapamycin(mTOR), 70 kDa ribosomal protein S6 kinase(P70 S6 K), and 4 E binding protein 1(4 E-BP1)] of the mammalian target of rapamycin complex 1(mTORC1) signaling pathway, cancerous inhibitor of protein phosphatase 2A(CIP2A), and protein kinase B(Akt) were measured by Western blot. The mRNA level of CIP2A in the SGC7901/DDP cells exposed to Eth for 24 h was analyzed by RT-qPCR. After SGC7901/DDP cells were transfected with CIP2A expression vector pcDNA3.1-HA-CIP2A and treated with different concentrations of Eth, MTT assay was used to determine the prolife-ration of SGC7901/DDP cells and Western blot to detect the expression levels of related proteins. The interaction sites of Eth and CIP2A were predicted by molecular docking. The affinity between Eth and CIP2A was determined by drug affinity responsive target stability(DARTS) assay. The pharmacokinetic properties and drug-like activity of Eth were predicted by SwissADME. The results indicated that SGC7901/DDP cells were more sensitive to Eth than SGC7901 cells. Eth significantly inhibited proliferation and colony formation and changed the morphology, roundness, and area of SGC7901/DDP cells. Eth treatment caused the nucleus shrinking and significantly increased the apoptosis rate of the cells. Furthermore, Eth down-regulated the expression of caspase-9 and caspase-3 precursors and promoted the cleavage of PARP, which suggested that Eth induced the apoptosis of SGC7901/DDP cells. The GFP-LC3 in Eth-treated cells showed speckled aggregation. The up-regulated expression of LC3-Ⅱ by Eth indicated that Eth activated the autophagy of SGC7901/DDP cells. Eth down-regulated the expression of P-gp, the phosphorylation of mTOR, P70 S6K, and 4E-BP1, the expression of CIP2A, and the phosphorylation of Akt. Additionally, it increased the activity of PP2A, and had no significant effect on the expression of CIP2A in SGC7901/DDP cells. CIP2A overexpression antagonized the inhibition of cell proliferation and the activation of autophagy by Eth. Molecular docking suggested that Eth bound to CIP2A. The results of DARTS assay further proved the above binding effect. Eth has potential drug-like activity. The above results demonstrated that Eth inhibited the proliferation, induced the apoptosis, and activated the autophagy of SGC7901/DDP cells by targeting CIP2A and then down-regulating PP2A/mTORC1 signaling pathway. This study provided a new target for the treatment of cisplatin-resistant gastric cancer.
Humans
;
Cisplatin/therapeutic use*
;
Caspase 9/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Caspase 3/metabolism*
;
Stomach Neoplasms/metabolism*
;
Drug Resistance, Neoplasm
;
Antineoplastic Agents/therapeutic use*
;
Molecular Docking Simulation
;
Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use*
;
Autophagy
;
Apoptosis
;
Cell Proliferation
;
Apoptosis Regulatory Proteins/metabolism*
;
Mechanistic Target of Rapamycin Complex 1/metabolism*
;
Cell Line, Tumor
8.Numb activates the mTORC1 signaling pathway in proximal tubular epithelial cells by upregulating V1G1 expression.
Ze LIU ; Da YOU ; Yong LI ; Yong Mei HE ; A Fang LI ; Pan LI ; Chun Yan LI
Journal of Southern Medical University 2022;42(10):1462-1469
OBJECTIVE:
To investigate the role of Numb in regulating mammalian target of rapamycin (mTOR) complex 1 (mTORC1) signaling pathway.
METHODS:
Male BALB/C mouse models of acute kidney injury (AKI) were subjected to intravenous injections of Numb-siRNA or NC-siRNA with or without intraperitoneal cisplatin injections. After the treatments, the expressions and distribution of Numb and megalin in the renal tissues of the mice were detected with immunohistochemistry, and the renal expressions of Numb, S6, p-S6, S6K1, p-S6K1, 4EBP1 and p-4EBP1 were examined with Western blotting. The proximal renal tubular epithelial cells were isolated from the mice transfected with Numb-siRNA for in vitro culture. In NRK-52E cells, the effects of amino acid stimulation, Numb knockdown, and V1G1 overexpression, alone or in combination, on expressions of Numb, S6 and p-S6 were detected with Western blotting; the expressions of AMPK and p-AMPK were also detected in transfected NRK-52E cells, mouse kidneys and cultured mouse renal tubular epithelial cells.
RESULTS:
In BALB/C mice, injection of Numb-siRNA caused significant reductions of Numb and p-S6 expressions without affecting megalin expression in the renal proximal tubules (P < 0.05). Cisplatin treatment obviously upregulated p-S6K1 and p-4EBP1 expressions in the kidneys of the mice (P < 0.05), and this effect was significantly inhibited by treatment with Numb-siRNA (P < 0.05). In NRK-52E cells, amino acid stimulation significantly upregulated the expression of p-S6 (P < 0.05), which was strongly suppressed by transfection with Numb-siRNA (P < 0.05). Numb knockdown inhibited AMPK activation in NRK-52E cells, mouse kidneys and primary proximal tubular epithelial cells (P < 0.05). Numb knockdown significantly downregulated V1G1 expression in NRK-52E cells (P < 0.05), and V1G1 overexpression obviously reversed the inhibitory effect of Numb-siRNA on S6 phosphorylation (P < 0.05).
CONCLUSION
Numb promotes the activation of mTORC1 signaling in proximal tubular epithelial cells by upregulating V1G1 expression.
Animals
;
Male
;
Mice
;
Amino Acids/pharmacology*
;
AMP-Activated Protein Kinases/metabolism*
;
Cisplatin/pharmacology*
;
Epithelial Cells
;
Low Density Lipoprotein Receptor-Related Protein-2/metabolism*
;
Mammals/metabolism*
;
Mechanistic Target of Rapamycin Complex 1/metabolism*
;
Membrane Proteins/metabolism*
;
Mice, Inbred BALB C
;
Nerve Tissue Proteins/metabolism*
;
RNA, Small Interfering/metabolism*
;
Signal Transduction
;
Vacuolar Proton-Translocating ATPases/metabolism*
9.Regulation of blood-testis barrier dynamics by the mTORC1/rpS6 signaling complex: An in vitro study.
Lin-Xi LI ; Si-Wen WU ; Ming YAN ; Qing-Quan LIAN ; Ren-Shan GE ; C Yan CHENG
Asian Journal of Andrology 2019;21(4):365-375
During spermatogenesis, developing germ cells that lack the cellular ultrastructures of filopodia and lamellipodia generally found in migrating cells, such as macrophages and fibroblasts, rely on Sertoli cells to support their transport across the seminiferous epithelium. These include the transport of preleptotene spermatocytes across the blood-testis barrier (BTB), but also the transport of germ cells, in particular developing haploid spermatids, across the seminiferous epithelium, that is to and away from the tubule lumen, depending on the stages of the epithelial cycle. On the other hand, cell junctions at the Sertoli cell-cell and Sertoli-germ cell interface also undergo rapid remodeling, involving disassembly and reassembly of cell junctions, which, in turn, are supported by actin- and microtubule-based cytoskeletal remodeling. Interestingly, the underlying mechanism(s) and the involving biomolecule(s) that regulate or support cytoskeletal remodeling remain largely unknown. Herein, we used an in vitro model of primary Sertoli cell cultures that mimicked the Sertoli BTB in vivo overexpressed with the ribosomal protein S6 (rpS6, the downstream signaling protein of mammalian target of rapamycin complex 1 [mTORC1]) cloned into the mammalian expression vector pCI-neo, namely, quadruple phosphomimetic and constitutively active mutant of rpS6 (pCI-neo/p-rpS6-MT) versus pCI-neo/rpS6-WT (wild-type) and empty vector (pCI-neo/Ctrl) for studies. These findings provide compelling evidence that the mTORC1/rpS6 signal pathway exerted its effects to promote Sertoli cell BTB remodeling. This was mediated through changes in the organization of actin- and microtubule-based cytoskeletons, involving changes in the distribution and/or spatial expression of actin- and microtubule-regulatory proteins.
Actins/metabolism*
;
Animals
;
Blood-Testis Barrier/metabolism*
;
Cells, Cultured
;
Male
;
Mechanistic Target of Rapamycin Complex 1/metabolism*
;
Permeability
;
Rats
;
Ribosomal Protein S6/metabolism*
;
Seminiferous Epithelium/metabolism*
;
Sertoli Cells/metabolism*
;
Signal Transduction/physiology*
10.Sensors for the mTORC1 pathway regulated by amino acids.
Journal of Zhejiang University. Science. B 2019;20(9):699-712
The mechanistic target of rapamycin complex 1 (mTORC1) controls cell growth and metabolism in response to various environmental inputs, especially amino acids. In fact, the activity of mTORC1 is highly sensitive to changes in amino acid levels. Over past decades, a variety of proteins have been identified as participating in the mTORC1 pathway regulated by amino acids. Classically, the Rag guanosine triphosphatases (GTPases), which reside on the lysosome, transmit amino acid availability to the mTORC1 pathway and recruit mTORC1 to the lysosome upon amino acid sufficiency. Recently, several sensors of leucine, arginine, and S-adenosylmethionine for the amino acid-stimulated mTORC1 pathway have been coming to light. Characterization of these sensors is requisite for understanding how cells adjust amino acid sensing pathways to their different needs. In this review, we summarize recent advances in amino acid sensing mechanisms that regulate mTORC1 activity and highlight these identified sensors that accurately transmit specific amino acid signals to the mTORC1 pathway.
Amino Acids/chemistry*
;
Animals
;
Arginine/chemistry*
;
Cell Membrane/metabolism*
;
GTP Phosphohydrolases/metabolism*
;
Gene Expression Regulation
;
Golgi Apparatus/metabolism*
;
Humans
;
Leucine/chemistry*
;
Lysosomes/metabolism*
;
Mechanistic Target of Rapamycin Complex 1/metabolism*
;
Methionine/chemistry*
;
S-Adenosylmethionine/chemistry*
;
Signal Transduction
;
TOR Serine-Threonine Kinases/metabolism*

Result Analysis
Print
Save
E-mail