1.NMDA Receptor Antagonist MK801 Protects Against 1-Bromopropane-Induced Cognitive Dysfunction.
Lin XU ; Xiaofei QIU ; Shuo WANG ; Qingshan WANG ; Xiu-Lan ZHAO
Neuroscience Bulletin 2019;35(2):347-361
Occupational exposure to 1-bromopropane (1-BP) induces learning and memory deficits. However, no therapeutic strategies are currently available. Accumulating evidence has suggested that N-methyl-D-aspartate receptors (NMDARs) and neuroinflammation are involved in the cognitive impairments in neurodegenerative diseases. In this study we aimed to investigate whether the noncompetitive NMDAR antagonist MK801 protects against 1-BP-induced cognitive dysfunction. Male Wistar rats were administered with MK801 (0.1 mg/kg) prior to 1-BP intoxication (800 mg/kg). Their cognitive performance was evaluated by the Morris water maze test. The brains of rats were dissected for biochemical, neuropathological, and immunological analyses. We found that the spatial learning and memory were significantly impaired in the 1-BP group, and this was associated with neurodegeneration in both the hippocampus (especially CA1 and CA3) and cortex. Besides, the protein levels of phosphorylated NMDARs were increased after 1-BP exposure. MK801 ameliorated the 1-BP-induced cognitive impairments and degeneration of neurons in the hippocampus and cortex. Mechanistically, MK801 abrogated the 1-BP-induced disruption of excitatory and inhibitory amino-acid balance and NMDAR abnormalities. Subsequently, MK801 inhibited the microglial activation and release of pro-inflammatory cytokines in 1-BP-treated rats. Our findings, for the first time, revealed that MK801 protected against 1-BP-induced cognitive dysfunction by ameliorating NMDAR function and blocking microglial activation, which might provide a potential target for the treatment of 1-BP poisoning.
Animals
;
Brain
;
drug effects
;
metabolism
;
pathology
;
Cognitive Dysfunction
;
drug therapy
;
metabolism
;
pathology
;
Disease Models, Animal
;
Dizocilpine Maleate
;
pharmacology
;
Excitatory Amino Acid Antagonists
;
pharmacology
;
Hydrocarbons, Brominated
;
Inflammasomes
;
drug effects
;
metabolism
;
Male
;
Maze Learning
;
drug effects
;
physiology
;
Microglia
;
drug effects
;
metabolism
;
pathology
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
metabolism
;
Neurons
;
drug effects
;
metabolism
;
pathology
;
Nootropic Agents
;
pharmacology
;
Random Allocation
;
Rats, Wistar
;
Receptors, N-Methyl-D-Aspartate
;
antagonists & inhibitors
;
metabolism
;
Spatial Memory
;
drug effects
;
physiology
;
Specific Pathogen-Free Organisms
2.Effects of Acorus tatarinowii Schott and its active component -5- hydroxymethylfurfural on ERK/CREB signal in hippocampus of exercise-induced fatigue rats.
Hui-Hua CHEN ; Mei-Ju ZHU ; Hong-Zhu ZHU ; Xiao-Min DING ; Hui WANG ; Ze-Hua MAO
Chinese Journal of Applied Physiology 2019;35(4):366-370
OBJECTIVE:
To investigate the effects of Acorus tatarinowii Schott and its active component 5- hydroxymethyl furfural (HMF) on learning and memory and ERK/CREB signal in hippocampus of rats with exercise-induced fatigue.
METHODS:
SD rats were randomly divided into normal group (A), exercise group (B), exercise + HMF low, middle and high dose treatment group (C, D, E), exercise + acorus tatarinowii Schott low, middle and high dose treatment group (F, G, H), with ten rats in each group. The rats in group C, D and E were treated with HMF at the doses of 0.10, 1.00 and 3.00 mg. kg by ig. The rats in group F, G and H were treated with the extracts of Acorus tatarinowii Schott at the doses of 0.12, 1.20 and 4.80 g. kg by ig. Learning and memory of rats were tested by the method of water maze experiment, and the expression levels of p-ERK1/2 and p-CREB protein in hippocampus of rats were tested by the method of Western blot in the end of the experiment.
RESULTS:
The escape latencies of E and H groups were lower than those of groups B, C, D, F and G; and the numbers of plateau crossing were more than those of groups B, C, D, F and G and the expression levels of p-ERK1/2, p-CREB protein were higher than those of groups B, C, D, F and G , respectively(P < 0.01). There was no significant difference in the above indexes among groups A, E and H(P>0.05) except that the expression levels of p-ERK2 protein in group E were lower than those in group A and H (P<0.05).
CONCLUSION
Acorus tatarinowii and its active component- HMF can improve the learning and memory of rats with exercise-induced fatigue, and the mechanism is related to the up-regulation of ERK / CREB signal in hippocampus of rats with exercise-induced fatigue.
Acorus
;
chemistry
;
Animals
;
Cyclic AMP Response Element-Binding Protein
;
metabolism
;
Fatigue
;
drug therapy
;
Furaldehyde
;
analogs & derivatives
;
pharmacology
;
Hippocampus
;
metabolism
;
MAP Kinase Signaling System
;
Maze Learning
;
drug effects
;
Memory
;
drug effects
;
Physical Conditioning, Animal
;
Phytochemicals
;
pharmacology
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
3.Effects of berberine on learning and memory ability in vascular cognitive impairment rats.
Ru-Huan WANG ; Ru ZHOU ; Yang DING ; Zhen-Xing ZHOU
Chinese Journal of Applied Physiology 2019;35(4):359-362
OBJECTIVE:
To investigate the effects of berberine on learning and memory ability in vascular cognitive impairment rats.
METHODS:
Sixty-eight Wistar rats were randomly divided into control group (n=10), sham operated group (n=10) and the modeling group of vascular cognitive impairment rat (n=48), then the rats in modeling group were randomly divided into four groups (n=10): vehicle group, berberine low dose group (20 mg/kg), medium dose group (40 mg/kg) and high dose group (60 mg/kg). Bilateral common carotid arteries were occluded in rats to establish vascular cognitive impairment (VCI) model. Different doses of berberine were intraperitoneally injected into the treatment group and normal saline was intraperitoneally injected into the other groups once a day for a total of 34 days. After 28 days of administration, Morris water maze was used to test the learning and memory ability of rats. After the water maze experiment, the levels of superoxide dismutase (SOD) activity, glutathione (GSH), malondialdehyde (MDA), tumor necrosis factor alpha(TNF-α), interleukin-1 beta (IL-1β), 5-hydroxytryptamine (5-HT) and monoamine oxidase (MAO) in the forebrain cortex were detected.
RESULTS:
Compared to sham group, the escape latency in VCI group was significantly extended (P<0.01) and the times of passing through the platform were decreased remarkably (P<0.01). The levels of SOD, GSH and 5-HT in the hippocampus or anterior cortex were decreased significantly (P<0.01), while the contents of MDA, TNF-α, IL-1β and MAO were increased remarkably (P<0.01). Compared with VCI group, the escape latency in berberine-treated groups was shortened significantly (P<0.01, P<0.05) and the times of passing through the platform were increased remarkably (P<0.01, P<0.05), the levels of SOD, GSH and 5-HT were increased significantly (P<0.01), while the contents of TNF-α, IL-1β and MAO were decreased remarkably (P<0.01).
CONCLUSION
Berberine could significantly improve the spatial learning and memory abilities of rats with vascular cognitive impairment. The mechanism may be related to the effects of berberine on the hippocampal antioxidant stress, anti-inflammatory response and the monoamine neurotransmitter system in the forebrain cortex. Berberine 60 mg/kg dose group had better effect.
Animals
;
Berberine
;
pharmacology
;
Cognitive Dysfunction
;
drug therapy
;
Hippocampus
;
Inflammation
;
Maze Learning
;
drug effects
;
Memory
;
drug effects
;
Oxidative Stress
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Rats, Wistar
4.Icariin Improves Cognitive Impairment after Traumatic Brain Injury by Enhancing Hippocampal Acetylation.
Zi-Gang ZHANG ; Xin WANG ; Jin-Hai ZAI ; Cai-Hua SUN ; Bing-Chun YAN
Chinese journal of integrative medicine 2018;24(5):366-371
OBJECTIVETo examine the effect of icariin (ICA) on the cognitive impairment induced by traumatic brain injury (TBI) in mice and the underlying mechanisms related to changes in hippocampal acetylation level.
METHODSThe modifified free-fall method was used to establish the TBI mouse model. Mice with post-TBI cognitive impairment were randomly divided into 3 groups using the randomised block method (n=7): TBI (vehicle-treated), low-dose (75 mg/kg) and high-dose (150 mg/kg) of ICA groups. An additional sham-operated group (vehicle-treated) was employed. The vehicle or ICA was administrated by gavage for 28 consecutive days. The Morris water maze (MWM) test was conducted. Acetylcholine (ACh) content, mRNA and protein levels of choline acetyltransferase (ChAT), and protein levels of acetylated H3 (Ac-H3) and Ac-H4 were detected in the hippocampus.
RESULTSCompared with the sham-operated group, the MWM performance, hippocampal ACh content, mRNA and protein levels of ChAT, and protein levels of Ac-H3 and Ac-H4 were signifificantly decreased in the TBI group (P<0.05). High-dose of ICA signifificantly ameliorated the TBI-induced weak MWM performance, increased hippocampal ACh content, and mRNA and protein levels of ChAT, as well as Ac-H3 protein level compared with the TBI group (P<0.05).
CONCLUSIONICA improved post-TBI cognitive impairment in mice by enhancing hippocampal acetylation, which improved hippocampal cholinergic function and ultimately improved cognition.
Acetylation ; Acetylcholine ; metabolism ; Animals ; Brain Injuries, Traumatic ; complications ; Choline O-Acetyltransferase ; genetics ; metabolism ; Cognitive Dysfunction ; drug therapy ; etiology ; Flavonoids ; chemistry ; pharmacology ; therapeutic use ; Hippocampus ; pathology ; Histones ; metabolism ; Homeostasis ; drug effects ; Male ; Maze Learning ; drug effects ; Mice ; RNA, Messenger ; genetics ; metabolism
5.Angelica tenuissima Nakai Ameliorates Cognitive Impairment and Promotes Neurogenesis in Mouse Model of Alzheimer's Disease.
Minji CHOI ; Younghyurk LEE ; Seung-Hun CHO
Chinese journal of integrative medicine 2018;24(5):378-384
OBJECTIVETo research Angelica tenuissima Nakai (ATN) for use in novel Alzheimer's disease (AD) therapeutics.
METHODSThe effect of a 30% ethanol extract of ATN (KH032) on AD-like cognitive impairment and neuropathological and neuroinflammatory changes induced by bilateral intracerebroventricular injections of β-amyloid (Aβ) peptide (Aβ) was investigated. Male C57Bl/6 mice were randomly divided into 4 groups, 10 in each group. KH032-treated groups were administrated with a low or high dose of KH032 (50 and 200 mg/kg, respectively), intragastrically for 16 days; distilled water was applied in the sham and negative groups. Open fifield test, Y maze and Morris water maze test were used for behavior test and cognitive ability. In addition, the neuroprotective effects of KH032 in Aβ-infused mice on the histopathological markers [neuronspecific nuclear protein (NeuN), Aβ] of neurodegeneration were examined. The levels of glial fibrillary acidic protein (GFAP), NeuN, phosphorylation extracellular signal-regulated kinase (ERK)/ERK, brain-derived neurotrophic factor (BDNF), phosphorylation cAMP response element-binding (CREB)/CREB protein expression were measured by Western blot.
RESULTSKH032 treatment ameliorated cognitive impairments, reduced the overexpression of Aβ, and inhibited neuronal loss and neuroinflammatory response in the Aβ-infused mice. Moreover, KH032 treatment enhanced BDNF expression levels in the hippocampus. Finally, KH032 treatment increased phosphorylation of ERK1/2 and CREB, vital for ERK-CREB signaling.
CONCLUSIONSKH032 attenuated cognitive defificits in the Aβ-infused mice by increasing BDNF expression and ERK1/2 and CREB phosphorylation and inhibiting neuronal loss and neuroinflflammatory response, suggesting that KH032 has therapeutic potential in neurodegenerative disorders such as AD.
Alzheimer Disease ; drug therapy ; pathology ; physiopathology ; Amyloid beta-Peptides ; Angelica ; chemistry ; Animals ; Brain ; pathology ; Brain-Derived Neurotrophic Factor ; metabolism ; Cognitive Dysfunction ; complications ; drug therapy ; physiopathology ; Cyclic AMP Response Element-Binding Protein ; metabolism ; Disease Models, Animal ; Male ; Maze Learning ; drug effects ; Memory, Short-Term ; drug effects ; Mice, Inbred C57BL ; Neurogenesis ; drug effects ; Neuroglia ; drug effects ; metabolism ; pathology ; Neurons ; drug effects ; metabolism ; pathology ; Neuroprotective Agents ; pharmacology ; therapeutic use ; Phosphorylation ; drug effects ; Phytotherapy ; Plant Extracts ; pharmacology ; therapeutic use ; Plaque, Amyloid ; drug therapy ; pathology ; physiopathology ; Signal Transduction ; drug effects
6.Effects of Honokiol on cognitive function in mice with kainic acid-induced epilepsy.
Qingmei WANG ; Min SHU ; Qianzi XU ; Yiyi XIE ; Shengzhe RUAN ; Jianda WANG ; Linghui ZENG
Journal of Zhejiang University. Medical sciences 2018;47(5):450-456
OBJECTIVE:
To investigate the effects of Honokiol on cognitive function in mice with epilepsy.
METHODS:
Kainic acid (38 mg/kg) was intraperitoneally injected in 5 weeks old male ICR mice to induce epilepsy. Honokiol at dose of 3, 10, 30 mg/kg was given to epilepic mice by intraperitoneal injection for 10 days. Fluoro-Jade B staining was used to assess neuronal death; Morris water maze and Y maze tests were used to measure cognitive function such as learning and memory; Western blot was performed to detect the expression of acetylated superoxide dismutase (SOD), microtubule associated protein 1 light chain 3-Ⅱ (LC3-Ⅱ) and P62 in hippocampus tissue; thiobarbituric acid and WST-1 methods were used to detect malondialdehyde (MDA) and SOD.
RESULTS:
Compared with control group, the levels of acetylated-SOD, MDA, LC3-Ⅱ, P62 and neuronal death increased, cognitive function and SOD decreased in model group (<0.05 or <0.01). Honokiol at the dose of 10 mg/kg and 30 mg/kg decreased SOD acetylation, MDA content, expression of LC3-Ⅱ and P62, as well as neuronal death, and the cognitive function was improved (<0.05 or <0.01), especially in 30 mg/kg Honokiol group.
CONCLUSIONS
Honokiol alleviates oxidative stress and autophagy degradation disorder, decreases neuronal death, and therefore improves cognitive function in epilepsy mice.
Animals
;
Biphenyl Compounds
;
pharmacology
;
Cognition
;
drug effects
;
Epilepsy
;
chemically induced
;
Gene Expression Regulation
;
drug effects
;
Hippocampus
;
drug effects
;
Kainic Acid
;
Lignans
;
pharmacology
;
Male
;
Malondialdehyde
;
Maze Learning
;
drug effects
;
Mice
;
Mice, Inbred ICR
;
Neurons
;
drug effects
;
Superoxide Dismutase
;
genetics
7.Propofol combined with hypoxia induces cognitive dysfunction in immature rats p38 pathway.
Jing ZHANG ; Qing YU ; Yang LIU ; Hui LIU ; Mang SUN ; Qin TIAN ; Shengfen TU
Journal of Southern Medical University 2018;38(11):1294-1299
OBJECTIVE:
To investigate the effects of propofol combined with hypoxia on cognitive function of immature rats and the possible role of p38 pathway and tau protein in mediating such effects.
METHODS:
Ninety 7-day-old (P7) SD rats were randomized for daily intraperitoneal injection of propofol (50 mg/kg) or lipid emulsion (5.0 mL/kg) for 7 consecutive days. After each injection, the rats were placed in a warm box (38 ℃) with an oxygen concentration of 18% (hypoxia), 21% (normal air), or 50% (oxygen) until full recovery of the righting reflex. Another 90 P7 rats were similarly grouped and received intraperitoneal injections of p-p38 blocker (15 mg/kg) 30 min before the same treaments. The phosphorylated tau protein, total tau protein and p-p38 content in the hippocampus were detected using Western blotting. The spatial learning and memory abilities of the rats were evaluated with Morris water maze test.
RESULTS:
Compared with lipid emulsion, propofol injection resulted in significantly increased levels of p-p38, phosphorylated tau and total tau proteins in rats with subsequent hypoxic or normal air treatment ( < 0.05), but propofol with oxygen and injections of the blocker before propofol did not cause significant changes in the proteins. Without subsequent oxygenation, the rats receiving injections of propofol, with and without prior blocker injection, all showed significantly prolonged latency time and reduced platform-crossing times and third quadrant residence time compared with the corresponding lipid emulsion groups ( < 0.05). With oxygen treatment, the rats in propofoland blocker-treated groups showed no significant difference in the performance in Morris water maze test from the corresponding lipid emulsion group. The results of Morris water maze test differed significantly between blocker-propofol group and propofol groups irrespective of exposures to different oxygen levels ( < 0.05), but not between the lipid emulsion and blocker group pairs with exposures to different oxygen levels.
CONCLUSIONS
Propofol combined with hypoxia can affect the expression of tau protein through p38 pathway to impair the cognitive function of immature rats, in which oxygen plays a protective role.
Animals
;
Cognitive Dysfunction
;
etiology
;
metabolism
;
Hippocampus
;
chemistry
;
Hypnotics and Sedatives
;
pharmacology
;
Hypoxia, Brain
;
complications
;
metabolism
;
MAP Kinase Signaling System
;
Maze Learning
;
drug effects
;
physiology
;
Memory
;
drug effects
;
physiology
;
Propofol
;
pharmacology
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
tau Proteins
;
analysis
8.Effect of baicalin on behavioral characteristics of rats with attention deficit hyperactivity disorder.
Rong-Yi ZHOU ; Xin-Min HAN ; Jiao-Jiao WANG ; Hai-Xia YUAN ; Ji-Chao SUN ; Yue YOU ; Yu-Chen SONG
Chinese Journal of Contemporary Pediatrics 2017;19(8):930-937
OBJECTIVETo investigate the effect of baicalin on the behavioral characteristics of rats with attention deficit hyperactivity disorder (ADHD), and to provide a basis for further research on baicalin in the treatment of ADHD.
METHODSA total of 40 SHR rats were randomly divided into model group, methylphenidate hydrochloride (MPH) group, and low-, medium-, and high-dose baicalin groups, with 8 rats in each group. Eight WKY rats were selected as normal control group. The rats in the MPH group (0.07 mg/mL) and the low- (3.33 mg/mL), medium- (6.67 mg/mL), and high-dose (10 mg/mL) baicalin groups were given the corresponding drugs (1.5 mL/100 g) by gavage twice a day, and those in the normal control group and the model group were given an equal volume of normal saline by gavage twice a day. The course of treatment was 4 weeks for all groups. The open field test was performed to observe total moving distance and average moving speed on day 0 of experiment and at 7, 14, 21, and 28 days after gavage and to evaluate the control effects of drugs on hyperactivity and impulsive behavior. The Morris water maze test was used to observe the latency, time spent in the target quadrant, and number of platform crossings and to evaluate the effects of drugs on attention.
RESULTSThe open field test showed that the model group and the drug treatment groups had a significantly longer total moving distance and a significantly higher average moving speed than the normal control group on day 0 (P<0.05). On day 7, the MPH group had significant reductions in total moving distance and average moving speed compared with the model group (P<0.05). On day 14, the MPH group and the high-dose baicalin group had significant reductions in total moving distance and average moving speed compared with the model group (P<0.05). The data on days 21 and 28 showed that compared with the model group, the low-, medium-, and high-dose baicalin groups had gradual reductions in total moving distance and average moving speed (P<0.05). The water maze test showed that compared with the model group, the MPH group and the medium- and high-dose baicalin groups had a significantly longer time spent in the target quadrant (P<0.05), and the MPH group and the high-dose baicalin group had a significantly higher proportion of the moving distance in the target quadrant in total moving distance (P<0.05). The high-dose baicalin group had the highest number of platform crossings among all groups (P<0.05).
CONCLUSIONSBoth baicalin and MPH can regulate the motor ability and learning and memory abilities of SHR rats with ADHD and thus control the core symptoms of ADHD, i.e., hyperactivity, impulsive behavior, and inattention. Baicalin exerts its effect in a dose-dependent manner, and high-dose baicalin has the most significant effect, but compared with MPH, it needs a longer time to play its therapeutic effect.
Animals ; Attention Deficit Disorder with Hyperactivity ; drug therapy ; psychology ; Behavior, Animal ; drug effects ; Dose-Response Relationship, Drug ; Flavonoids ; therapeutic use ; Male ; Maze Learning ; drug effects ; Motor Activity ; drug effects ; Rats ; Rats, Inbred SHR ; Rats, Inbred WKY
9.Antioxidant and Anti-aging Activities of Silybum Marianum Protein Hydrolysate in Mice Treated with D-galactose.
Shu Yun ZHU ; Ning JIANG ; Jie TU ; Jing YANG ; Yue ZHOU
Biomedical and Environmental Sciences 2017;30(9):623-631
OBJECTIVEIn the present study, we investigated the antioxidant and anti-aging effects of Silybum marianum protein hydrolysate (SMPH) in D-galactose-treated mice.
METHODSD-galactose (500 mg/kg body weight) was intraperitoneally injected daily for 7 weeks to accelerate aging, and SMPH (400, 800, 1,200 mg/kg body weight, respectively) was simultaneously administered orally. The antioxidant and anti-aging effects of SMPH in the liver and brain were measured by biochemical assays. Transmission electron microscopy (TEM) was performed to study the ultrastructure of liver mitochondri.
RESULTSSMPH decreased triglyceride and cholesterol levels in the D-galactose-treated mice. It significantly elevated the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and total antioxidant capacity (T-AOC), which were suppressed by D-galactose. Monoamine oxidase (MAO) and malondialdehyde (MDA) levels as well as the concentrations of caspase-3 and 8-OHdG in the liver and brain were significantly reduced by SMPH. Moreover, it increased Bcl-2 levels in the liver and brain. Furthermore, SMPH significantly attenuated D-galactose-induced liver mitochondrial dysfunction by improving the activities of Na+-K+-ATPase and Ca2+-Mg2+-ATPase as well as mitochondrial membrane potential (ΔΨm) and fluidity. TEM showed that the degree of liver mitochondrial damage was significantly decreased by SMPH.
CONCLUSIONThe results indicated that SMPH protects against D-galactose-induced accelerated aging in mice through its antioxidant and anti-aging activities.
Aging ; drug effects ; Animals ; Antioxidants ; pharmacology ; Brain ; drug effects ; Caspase 3 ; metabolism ; Galactose ; toxicity ; Gene Expression Regulation, Enzymologic ; drug effects ; Glutathione Peroxidase ; metabolism ; Male ; Malondialdehyde ; metabolism ; Maze Learning ; drug effects ; Mice ; Milk Thistle ; chemistry ; Mitochondria, Liver ; drug effects ; Oxidative Stress ; drug effects ; Plant Proteins ; chemistry ; pharmacology ; Protective Agents ; pharmacology ; Protein Hydrolysates ; chemistry ; pharmacology ; Superoxide Dismutase ; metabolism
10.Effect of leptin on long-term spatial memory of rats with white matter damage in developing brain.
Chinese Journal of Contemporary Pediatrics 2017;19(12):1267-1271
OBJECTIVETo investigate the neuroprotective effect of leptin by observing its effect on spatial memory of rats with white matter damage in developing brain.
METHODSA total of 80 neonatal rats were randomly divided into 3 groups: sham-operation (n=27), model (n=27) and leptin intervention (n=27). The rats in the model and leptin intervention groups were used to prepare a model of white matter damage in developing brain, and the rats in the leptin intervention group were given leptin (100 μg/kg) diluted with normal saline immediately after modelling for 4 consecutive days. The survival rate of the rats was observed and the change in body weight was monitored. When the rats reached the age of 21 days, the Morris water maze test was used to evaluate spatial memory.
RESULTSThere was no significant difference in the survival rate of rats between the three groups (P>0.05). Within 10 days after birth, the leptin intervention group had similar body weight as the sham-operation group and significantly lower body weight than the model group (P<0.05); more than 10 days after birth, the leptin intervention group had rapid growth with higher body weight than the model and sham-operation groups (P>0.05). The results of place navigation showed that from the second day of experiment, there was a significant difference in the latency period between the three groups (P<0.05); from the fourth day of experiment, the leptin intervention group had a similar latency period as the sham-operation and a significantly shorter latency period than the model group (P<0.05). The results of space search experiment showed that compared with the sham-operation group, the model group had a significant reduction in the number of platform crossings and a significantly longer latency period (P<0.05); compared with the model group, the leptin intervention group had a significantly increased number of platform crossings and a significantly shortened latency period (P<0.05), while there was no significant difference between the leptin intervention and sham-operation groups.
CONCLUSIONSLeptin can alleviate spatial memory impairment of rats with white matter damage in developing brain. It thus exerts a neuroprotective effect, and is worthy of further research.
Animals ; Female ; Leptin ; pharmacology ; Maze Learning ; drug effects ; Neuroprotective Agents ; pharmacology ; Pregnancy ; Rats ; Rats, Sprague-Dawley ; Reaction Time ; Spatial Memory ; drug effects ; White Matter ; pathology

Result Analysis
Print
Save
E-mail