1.Research progress on the impact and mechanism of neutrophil extracellular traps (NETs) components in atherosclerosis.
Xin CHEN ; Jing-Jing ZHU ; Xiao-Fan YANG ; Yu-Peng MA ; Yi-Min BAO ; Ke NING
Acta Physiologica Sinica 2025;77(1):107-119
Atherosclerosis (AS) is a prevalent clinical vascular condition and serves as a pivotal pathological foundation for cardiovascular diseases. Understanding the pathogenesis of AS has significant clinical and societal implications, aiding in the development of targeted drugs. Neutrophils, the most abundant leukocytes in circulation, assume a central role during inflammatory responses and closely interact with AS, which is a chronic inflammatory vascular disease. Neutrophil extracellular traps (NETs) are substantial reticular formations discharged by neutrophils that serve as an immune defense mechanism. These structures play a crucial role in inducing dysfunction of the vascular barrier following endothelial cell injury. Components released by NETs pose a threat to the integrity of vascular endothelium, which is essential as it acts as the primary barrier to maintain vascular wall integrity. Endothelial damage constitutes the initial stage in the onset of AS. Recent investigations have explored the intricate involvement of NETs in AS progression. The underlying structures of NETs and their active ingredients, including histone, myeloperoxidase (MPO), cathepsin G, neutrophil elastase (NE), matrix metalloproteinases (MMPs), antimicrobial peptide LL-37, alpha-defensin 1-3, and high mobility group protein B1 have diverse and complex effects on AS through various mechanisms. This review aims to comprehensively examine the interplay between NETs and AS while providing insights into their mechanistic underpinnings of NETs in this condition. By shedding light on this intricate relationship, this exploration paves the way for future investigations into NETs while guiding clinical translation efforts and charting new paths for therapeutic interventions.
Extracellular Traps/physiology*
;
Humans
;
Atherosclerosis/immunology*
;
Neutrophils/physiology*
;
Leukocyte Elastase/metabolism*
;
Peroxidase/physiology*
;
Matrix Metalloproteinases/physiology*
;
Cathepsin G/metabolism*
;
Cathelicidins
;
HMGB1 Protein/physiology*
;
Histones
;
Animals
;
Endothelium, Vascular
2.Effect of mechanical stimuli on physicochemical properties of joint fluid in osteoarthritis.
Han YAO ; Aixian TIAN ; Jianxiong MA ; Xinlong MA
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(7):903-911
OBJECTIVE:
To analyze the differences in the effects of different mechanical stimuli on cells, cytokines, and proteins in synovial fluid of osteoarthritis joints, and to elucidate the indirect mechanism by which mechanical signals remodel the synovial fluid microenvironment through tissue cells.
METHODS:
Systematically integrate recent literature, focusing on the regulatory effects of different mechanical stimuli on the physicochemical properties of synovial fluid. Analyze the dynamic process by which mechanical stimuli regulate secretory and metabolic activities through tissue cells, thereby altering the physicochemical properties of cytokines and proteins.
RESULTS:
Appropriate mechanical stimuli activate mechanical signals in chondrocytes, macrophages, and synovial cells, thereby influencing cellular metabolic activities, including inhibiting the release of pro-inflammatory factors and promoting the secretion of anti-inflammatory factors, and regulating the expression of matrix and inflammation-related proteins such as cartilage oligomeric matrix protein, peptidoglycan recognition protein 4, and matrix metalloproteinases.
CONCLUSION
Mechanical stimuli act on tissue cells, indirectly reshaping the synovial fluid microenvironment through metabolic activities, thereby regulating the pathological process of osteoarthritis.
Humans
;
Osteoarthritis/physiopathology*
;
Synovial Fluid/chemistry*
;
Chondrocytes/metabolism*
;
Cytokines/metabolism*
;
Macrophages/metabolism*
;
Stress, Mechanical
;
Cartilage Oligomeric Matrix Protein/metabolism*
;
Matrix Metalloproteinases/metabolism*
;
Synovial Membrane/cytology*
3.Research progress in the role of ultraviolet in the pathogenesis of rosacea.
Yuming XIE ; Yue HU ; Junke HUANG ; Juan LIU ; Qing ZHANG
Journal of Central South University(Medical Sciences) 2025;50(3):396-401
Rosacea is a common chronic inflammatory skin disease that predominantly affects the central face. It can impair appearance and cause various discomforts, thus negatively impacting patients' physical and mental well-being as well as their quality of life. Its pathophysiological mechanisms involve multiple factors. Studies have confirmed that ultraviolet radiation plays a significant role in the pathogenesis of rosacea, affecting skin tissues, cells, DNA, and proteins, and inducing oxidative damage. Ultraviolet can lead to the occurrence and development of rosacea by up-regulating the expression of LL-37, matrix metalloproteinase, vascular endothelial growth factor, and reactive oxygen species, and influence their interactions, thereby triggering inflammatory responses, altering the dermal matrix, and promoting capillary dilation and neovascularization, which contribute to the onset and progression of rosacea. Exploring the role of ultraviolet in the pathogenesis of rosacea can provide new strategies for protection and treatment, and enhance awareness of ultraviolet protection among patients with rosacea.
Humans
;
Rosacea/metabolism*
;
Ultraviolet Rays/adverse effects*
;
Cathelicidins
;
Reactive Oxygen Species/metabolism*
;
Antimicrobial Cationic Peptides/metabolism*
;
Matrix Metalloproteinases/metabolism*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Skin/metabolism*
4.Aberrant NF-κB activation in odontoblasts orchestrates inflammatory matrix degradation and mineral resorption.
Fanyuan YU ; Fengli HUO ; Feifei LI ; Yanqin ZUO ; Chenglin WANG ; Ling YE
International Journal of Oral Science 2022;14(1):6-6
Inflammation-associated proteinase functions are key determinants of inflammatory stromal tissues deconstruction. As a specialized inflammatory pathological process, dental internal resorption (IR) includes both soft and hard tissues deconstruction within the dentin-pulp complex, which has been one of the main reasons for inflammatory tooth loss. Mechanisms of inflammatory matrix degradation and tissue resorption in IR are largely unclear. In this study, we used a combination of Cre-loxP reporter, flow cytometry, cell transplantation, and enzyme activities assay to mechanistically investigate the role of regenerative cells, odontoblasts (ODs), in inflammatory mineral resorption and matrices degradation. We report that inflamed ODs have strong capabilities of matrix degradation and tissue resorption. Traditionally, ODs are regarded as hard-tissue regenerative cells; however, our data unexpectedly present ODs as a crucial population that participates in IR-associated tissue deconstruction. Specifically, we uncovered that nuclear factor-kappa b (NF-κB) signaling orchestrated Tumor necrosis factor α (TNF-α)-induced matrix metalloproteinases (Mmps) and Cathepsin K (Ctsk) functions in ODs to enhance matrix degradation and tissue resorption. Furthermore, TNF-α increases Rankl/Opg ratio in ODs via NF-κB signaling by impairing Opg expression but increasing Rankl level, which utterly makes ODs cell line 17IIA11 (A11) become Trap+ and Ctsk+ multinucleated cells to perform resorptive actions. Blocking of NF-κB signaling significantly rescues matrix degradation and resorptive functions of inflamed ODs via repressing vital inflammatory proteinases Mmps and Ctsk. Utterly, via utilizing NF-κB specific small molecule inhibitors we satisfactorily attenuated inflammatory ODs-associated human dental IR in vivo. Our data reveal the underlying mechanisms of inflammatory matrix degradation and resorption via proteinase activities in IR-related pathological conditions.
Humans
;
Matrix Metalloproteinases/metabolism*
;
Minerals/metabolism*
;
NF-kappa B/metabolism*
;
Odontoblasts/metabolism*
;
Osteoclasts/metabolism*
;
RANK Ligand/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
5.Study on the mechanism of Wuzi-Yanzong-Wan-medicated serum interfering with the mitochondrial permeability transition pore in the GC-2 cell induced by atractyloside.
De-Ling WU ; Tong-Sheng WANG ; Hong-Juan LIU ; Wei ZHANG ; Xiao-Hui TONG ; Dai-Yin PENG ; Ling-Yi KONG
Chinese Journal of Natural Medicines (English Ed.) 2022;20(4):282-289
Wuzi-Yanzong-Wan (WZYZW) is a classic prescription for male infertility. Our previous investigation has demonstrated that it can inhibit sperm apoptosis via affecting mitochondria, but the underlying mechanisms are unclear. The purpose of the present study was to explore the actions of WZYZW on mitochondrial permeability transition pore (mPTP) in mouse spermatocyte cell line (GC-2 cells) opened by atractyloside (ATR). At first, WZYZW-medicated serum was prepared from rats following oral administration of WZYZW for 7 days. GC-2 cells were divided into control group, model group, positive group, as well as 5%, 10%, 15% WZYZW-medicated serum group. Cyclosporine A (CsA) was used as a positive control. 50 μmol·L-1 ATR was added after drugs incubation. Cell viability was assessed using CCK-8. Apoptosis was detected using flow cytometry and TUNEL method. The opening of mPTP and mitochondrial membrane potential (MMP) were detected by Calcein AM and JC-1 fluorescent probe respectively. The mRNA and protein levels of voltage-dependent anion channel 1 (VDAC1), cyclophilin D (CypD), adenine nucleotide translocator (ANT), cytochrome C (Cyt C), caspase 3, 9 were detected by RT-PCR (real time quantity PCR) and Western blotting respectively. The results demonstrated that mPTP of GC-2 cells was opened after 24 hours of ATR treatment, resulting in decreased MMP and increased apoptosis. Pre-protection with WZYZ-medicated serum and CsA inhibited the opening of mPTP of GC-2 cells induced by ATR associated with increased MMP and decreased apoptosis. Moreover, the results of RT-qPCR and WB suggested that WZYZW-medicated serum could significantly reduce the mRNA and protein levels of VDAC1 and CypD, Caspase-3, 9 and CytC, as well as a increased ratio of Bcl/Bax. However, ANT was not significantly affected. Therefore, these findings indicated that WZYZW inhibited mitochondrial mediated apoptosis by attenuating the opening of mPTP in GC-2 cells. WZYZW-medicated serum inhibited the expressions of VDAC1 and CypD and increased the expression of Bcl-2, which affected the opening of mPTP and exerted protective and anti-apoptotic effects on GC-2 cell induced by ATR.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
;
Animals
;
Atractyloside/pharmacology*
;
Cyclophilin D
;
Male
;
Matrix Metalloproteinases
;
Mice
;
Mitochondrial Membrane Transport Proteins/metabolism*
;
Mitochondrial Permeability Transition Pore
;
RNA, Messenger
;
Rats
6.Prognostic value of tissue inhibitor of metalloproteinase-matrix metalloproteinase biomarkers at 30 days in patients with acute myocardial infarction without reperfusion therapy.
Hui-Fang PANG ; Yan GAO ; Jia-Min LIU ; Jia-Peng LU ; Yan-Ping WANG ; Si-Ming WANG ; Li-Bo HOU ; Ao-Xi TIAN ; Yan GAO
Chinese Medical Journal 2020;134(4):481-483
7.Comparison of Corticosteroids by 3 Approaches to the Treatment of Chronic Rhinosinusitis With Nasal Polyps
Yunyun ZHANG ; Hongfei LOU ; Yang WANG ; Ying LI ; Luo ZHANG ; Chengshuo WANG
Allergy, Asthma & Immunology Research 2019;11(4):482-497
PURPOSE: Corticosteroids are regarded as the mainstay of medical treatment of eosinophilic chronic rhinosinusitis with nasal polyps (ECRSwNP). To date, a head-to-head comparison of the efficacy and safety of glucocorticoid preparations administered via different routes for the treatment of chronic rhinosinusitis with nasal polyps has not been reported. To compare the efficacy and safety of steroids administered via the oral, intranasal spray and transnasal nebulization routes in the management of ECRSwNP over a short course. METHODS: Overall, 91 patients with ECRSwNP were recruited prospectively and randomized to receive either oral methylprednisolone, budesonide inhalation suspension (BIS) via transnasal nebulization, or budesonide nasal spray (BNS) for 2 weeks. Nasal symptoms and polyp sizes were assessed before and after the treatment. Similarly, nasal polyp samples were evaluated for immunological and tissue remodeling markers. Serum cortisol levels were assessed as a safety outcome. RESULTS: Oral methylprednisolone and BIS decreased symptoms and polyp sizes to a significantly greater extent from baseline (P < 0.05) than BNS. Similarly, BIS and oral methylprednisolone significantly reduced eosinophils, T helper 2 cells, eosinophil cationic protein, interleukin (IL)-5, and expression of matrix metalloproteinases 2 and 9, and significantly increased type 1 regulatory T cells, IL-10, transforming growth factor-β, and tissue inhibitor of metalloproteinases 1 and 2 in nasal polyps to a greater extent than BNS. Post-treatment serum cortisol levels were significantly decreased by oral methylprednisolone compared to BIS or BNS, which did not significantly alter the cortisol levels. CONCLUSIONS: A short course of BIS transnasal nebulization is more efficacious compared to BNS in the management of ECRSwNP and is safer than oral methylprednisolone with respect to hypothalamic-pituitary-adrenal axis function.
Adrenal Cortex Hormones
;
Budesonide
;
Eosinophil Cationic Protein
;
Eosinophils
;
Glucocorticoids
;
Humans
;
Hydrocortisone
;
Inhalation
;
Interleukin-10
;
Interleukins
;
Matrix Metalloproteinases
;
Methylprednisolone
;
Nasal Polyps
;
Polyps
;
Prospective Studies
;
Steroids
;
T-Lymphocytes, Regulatory
;
Tissue Inhibitor of Metalloproteinases
8.Vitamin D maintains E-cadherin intercellular junctions by downregulating MMP-9 production in human gingival keratinocytes treated by TNF-α
Changseok OH ; Hyun Jung KIM ; Hyun Man KIM
Journal of Periodontal & Implant Science 2019;49(5):270-286
PURPOSE: Despite the well-known anti-inflammatory effects of vitamin D in periodontal health, its mechanism has not been fully elucidated. In the present study, the effect of vitamin D on strengthening E-cadherin junctions (ECJs) was explored in human gingival keratinocytes (HGKs). ECJs are the major type of intercellular junction within the junctional epithelium, where loose intercellular junctions develop and microbial invasion primarily occurs. METHODS: HOK-16B cells, an immortalized normal human gingival cell line, were used for the study. To mimic the inflammatory environment, cells were treated with tumor necrosis factor-alpha (TNF-α). Matrix metalloproteinases (MMPs) in the culture medium were assessed by an MMP antibody microarray and gelatin zymography. The expression of various molecules was investigated using western blotting. The extent of ECJ development was evaluated by comparing the average relative extent of the ECJs around the periphery of each cell after immunocytochemical E-cadherin staining. Vitamin D receptor (VDR) expression was examined via immunohistochemical analysis. RESULTS: TNF-α downregulated the development of the ECJs of the HGKs. Dissociation of the ECJs by TNF-α was accompanied by the upregulation of MMP-9 production and suppressed by a specific MMP-9 inhibitor, Bay 11-7082. Exogenous MMP-9 decreased the development of ECJs. Vitamin D reduced the production of MMP-9 and attenuated the breakdown of ECJs in the HGKs treated with TNF-α. In addition, vitamin D downregulated TNF-α-induced nuclear factor kappa B (NF-κB) signaling in the HGKs. VDR was expressed in the gingival epithelium, including the junctional epithelium. CONCLUSIONS: These results suggest that vitamin D may avert TNF-α-induced downregulation of the development of ECJs in HGKs by decreasing the production of MMP-9, which was upregulated by TNF-α. Vitamin D may reinforce ECJs by downregulating NF-κB signaling, which is upregulated by TNF-α. Strengthening the epithelial barrier may be a way for vitamin D to protect the periodontium from bacterial invasion.
Bays
;
Blotting, Western
;
Cadherins
;
Cell Line
;
Down-Regulation
;
Epithelial Attachment
;
Epithelium
;
Gelatin
;
Humans
;
Intercellular Junctions
;
Keratinocytes
;
Matrix Metalloproteinase 9
;
Matrix Metalloproteinases
;
NF-kappa B
;
Periodontium
;
Receptors, Calcitriol
;
Tumor Necrosis Factor-alpha
;
Up-Regulation
;
Vitamin D
;
Vitamins
9.The mechanisms and treatments of muscular pathological changes in immobilization-induced joint contracture: A literature review.
Feng WANG ; Quan-Bing ZHANG ; Yun ZHOU ; Shuang CHEN ; Peng-Peng HUANG ; Yi LIU ; Yuan-Hong XU
Chinese Journal of Traumatology 2019;22(2):93-98
The clinical treatment of joint contracture due to immobilization remains difficult. The pathological changes of muscle tissue caused by immobilization-induced joint contracture include disuse skeletal muscle atrophy and skeletal muscle tissue fibrosis. The proteolytic pathways involved in disuse muscle atrophy include the ubiquitin-proteasome-dependent pathway, caspase system pathway, matrix metalloproteinase pathway, Ca-dependent pathway and autophagy-lysosomal pathway. The important biological processes involved in skeletal muscle fibrosis include intermuscular connective tissue thickening caused by transforming growth factor-β1 and an anaerobic environment within the skeletal muscle leading to the induction of hypoxia-inducible factor-1α. This article reviews the progress made in understanding the pathological processes involved in immobilization-induced muscle contracture and the currently available treatments. Understanding the mechanisms involved in immobilization-induced contracture of muscle tissue should facilitate the development of more effective treatment measures for the different mechanisms in the future.
Atrophy
;
Autophagy
;
Calcium
;
metabolism
;
Caspases
;
metabolism
;
Connective Tissue
;
metabolism
;
pathology
;
Contracture
;
etiology
;
metabolism
;
pathology
;
therapy
;
Fibrosis
;
Humans
;
Immobilization
;
adverse effects
;
Joints
;
Lysosomes
;
metabolism
;
Matrix Metalloproteinases
;
metabolism
;
Muscle, Skeletal
;
metabolism
;
pathology
;
Proteasome Endopeptidase Complex
;
metabolism
;
Proteolysis
;
Signal Transduction
;
physiology
;
Transforming Growth Factor beta1
;
metabolism
;
Ubiquitin
;
metabolism
10.Effect and Mechanism of Phosphodiesterase Inhibitors on Trabecular Outflow
Jae Woo KIM ; Jong Been LEE ; So Hyung LEE
Korean Journal of Ophthalmology 2019;33(5):414-421
PURPOSE: Phosphodiesterase (PDE) inhibitors increase matrix metalloproteinase (MMP) production by inhibiting re-uptake of adenosine and may potentiate nitric oxide (NO) activity. This study was performed to investigate the effects and mechanisms of PDE inhibitors on trabecular outflow in cultured human trabecular meshwork cells (HTMCs). METHODS: Primary HTMC cultures were exposed to 0, 20, and 50 µM dipyridamole (DPD) or theophylline (TPN). Permeability through the HTMC monolayer was assessed using carboxyfluorescein. The production of NO was assessed using the Griess assay and MMP-2 levels were measured via Western blotting. RESULTS: DPD significantly increased permeability accompanied with increased nitrite concentration and MMP-2 levels (all p < 0.05). TPN increased nitrite but did not affect permeability or MMP-2 levels significantly (p > 0.05). When treated with DPD and TPN together, both permeability and nitrite production were increased; however, MMP-2 levels showed no difference compared to DPD exposure alone (p > 0.05). CONCLUSIONS: DPD increased trabecular permeability accompanied with increased nitrite production and MMP-2 levels. PDE inhibitors may increase trabecular outflow by increasing MMP-2 levels and by potentiating NO activity through cyclic GMP in HTMC.
Adenosine
;
Blotting, Western
;
Cyclic GMP
;
Dipyridamole
;
Humans
;
Matrix Metalloproteinases
;
Nitric Oxide
;
Permeability
;
Phosphodiesterase Inhibitors
;
Theophylline
;
Trabecular Meshwork

Result Analysis
Print
Save
E-mail