1.Association between maternal blood lead levels and prevalence of dental caries in the primary dentition of children.
Yoshie NAGAI-YOSHIOKA ; Ryota YAMASAKI ; Reiko SUGA ; Mayumi TSUJI ; Reiji FUKANO ; Kiyoshi YOSHINO ; Seiichi MOROKUMA ; Wataru ARIYOSHI ; Masanori IWASAKI
Environmental Health and Preventive Medicine 2025;30():92-92
BACKGROUND:
Dental caries is a chronic childhood disease and one of the most prevalent public health problems worldwide. Lead is a heavy metal that is taken up by the teeth and bones. However, the association between lead exposure during pregnancy, when the tooth germs are formed, and the prevalence of dental caries in the primary dentition remains unclear. This study aimed to examine the association between maternal blood lead levels and the prevalence of dental caries in the primary dentition of children.
METHODS:
This cross-sectional study was conducted as an Adjunct Study to the Japan Environment and Children's Study (JECS), which is an ongoing nationwide birth-cohort study. Among children participating in the JECS at the University of Occupational and Environmental Health Sub-Regional Center, those aged 7-8 years underwent oral examination and questionnaire administration. The dft (i.e., sum of the number of decayed and filled primary teeth) was then determined. The dft numerically expresses the dental caries prevalence in the primary dentition (larger value indicates more prevalent dental caries). Poisson regression analyses with robust standard errors were performed to evaluate the association between maternal blood lead levels during pregnancy, measured using frozen samples, and the dft.
RESULTS:
The study included 139 children, of whom 54.7% were girls, and 89.2% were 7 years old. The median maternal blood lead level was 6.1 ng/g (25-75 percentile, 5.0-7.3). The median dft was 0 (25-75 percentile, 0-4). After adjusting for covariates including age, sex, and oral health status and behavior, maternal blood lead levels were significantly associated with increased dft (prevalence ratio, 1.6; 95% confidence interval, 1.3-1.8; per one standard deviation increase in natural log-transformed maternal blood lead levels).
CONCLUSIONS
This study found an association between maternal blood lead levels and the prevalence of dental caries in the primary dentition of children aged 7-8 years. Maternal exposure to lead during mid- to late-term pregnancy may affect the caries susceptibility of children after birth.
Humans
;
Lead/blood*
;
Female
;
Dental Caries/epidemiology*
;
Prevalence
;
Tooth, Deciduous
;
Male
;
Japan/epidemiology*
;
Child
;
Cross-Sectional Studies
;
Pregnancy
;
Adult
;
Maternal Exposure/adverse effects*
;
Environmental Pollutants/blood*
;
Prenatal Exposure Delayed Effects/epidemiology*
2.BTVT ameliorates offspring blood-brain barrier damage induced by prenatal and lactational neodymium oxide exposure via the gut-brain axis.
Xiaoyan DU ; Xiaocheng GAO ; Jing CAO ; Xin ZHAO ; Zhi HUO ; Shaoqing ZHAO ; Qingqing LIANG ; Lei GAO ; Yang DENG
Journal of Central South University(Medical Sciences) 2025;50(4):615-624
OBJECTIVES:
Exposure to rare earth elements (REEs) has been linked to various systemic diseases, but their impact on the offspring blood-brain barrier (BBB) via the gut-brain axis remains unclear. This study aims to investigate the effects of maternal exposure to neodymium oxide (Nd2O3) on the BBB integrity of offspring rats, and to evaluate the potential protective role of bifidobacterium tetrad viable tablets (BTVT) against Nd2O3-induced intestinal and BBB damage.
METHODS:
Healthy adult SD rats were mated at a 1:1 male-to-female ratio, with the day of vaginal plug detection marked as gestational day 0. A total of 60 pregnant rats were randomly assigned to the following groups: Control, 50 mg/(kg·d) Nd2O3, 100 mg/(kg·d) Nd2O3, 200 mg/(kg·d) Nd2O3, and 200 mg/(kg·d) Nd2O3 + BTVT group. Treatments were administered by daily oral gavage throughout pregnancy and lactation. On postnatal day 21 (weaning), offspring feces, brain, and colon tissues were collected. Hematoxylin and eosin (HE) staining was used to assess structural changes in brain and intestinal tissues. Short-chain fatty acids (SCFAs) in feces were quantified by gas chromatography-mass spectrometry (GC-MS). Evans Blue (EB) dye extravasation assessed BBB permeability. Gene and protein expression levels of tight junction proteins occludin and zonula occludens-1 (ZO-1) were measured by reverse transcription PCR (RT-PCR) and Western blotting (WB), respectively. Neodymium levels in brain tissue were determined via inductively coupled plasma mass spectrometry (ICP-MS).
RESULTS:
HE staining revealed that maternal Nd2O3 exposure caused mucosal edema, increased submucosal spacing, and lymphocyte infiltration in offspring colon, as well as neuronal degeneration and vacuolization in brain tissue. BTVT intervention alleviated these changes. GC-MS analysis showed that levels of acetic acid, propionic acid, butyric acid, and isobutyric acid significantly decreased, while valeric acid and isovaleric acid increased in offspring of Nd2O3-exposed mothers (P<0.05). BTVT significantly restored levels of acetic, propionic, and isobutyric acids and reduced valeric acid content (P<0.05). EB permeability was significantly elevated in Nd2O3-exposed offspring brains (P<0.05), but reduced with BTVT treatment (P<0.05). RT-PCR and WB showed downregulation of occludin and ZO-1 expression following Nd2O3 exposure (P<0.05), which was reversed by BTVT (P<0.05). ICP-MS results indicated significantly increased brain neodymium levels in offspring from all Nd2O3-exposed groups (P<0.05), while BTVT significantly reduced neodymium accumulation compared to the 200 mg/(kg·d) Nd2O3 group (P<0.05).
CONCLUSIONS
Maternal exposure to Nd2O3 during pregnancy and lactation disrupts intestinal health and BBB integrity in offspring, elevates brain neodymium accumulation, and induces neuronal degeneration. BTVT effectively mitigates Nd2O3-induced intestinal and BBB damage in offspring, potentially through modulation of the gut-brain axis.
Animals
;
Female
;
Blood-Brain Barrier/pathology*
;
Pregnancy
;
Rats, Sprague-Dawley
;
Rats
;
Male
;
Neodymium/toxicity*
;
Prenatal Exposure Delayed Effects/prevention & control*
;
Lactation
;
Maternal Exposure/adverse effects*
;
Brain
3.Association of Co-Exposure to Polycyclic Aromatic Hydrocarbons and Metal(loid)s with the Risk of Neural Tube Defects: A Case-Control Study in Northern China.
Xiao Qian JIA ; Yuan LI ; Lei JIN ; Lai Lai YAN ; Ya Li ZHANG ; Ju Fen LIU ; Le ZHANG ; Linlin WANG ; Ai Guo REN ; Zhi Wen LI
Biomedical and Environmental Sciences 2025;38(2):154-166
OBJECTIVE:
Exposure to polycyclic aromatic hydrocarbons (PAHs) or metal(loid)s individually has been associated with neural tube defects (NTDs). However, the impacts of PAH and metal(loid) co-exposure and potential interaction effects on NTD risk remain unclear. We conducted a case-control study in China among population with a high prevalence of NTDs to investigate the combined effects of PAH and metal(loid) exposures on the risk of NTD.
METHODS:
Cases included 80 women who gave birth to offspring with NTDs, whereas controls were 50 women who delivered infants with no congenital malformations. We analyzed the levels of placental PAHs using gas chromatography and mass spectrometry, PAH-DNA adducts with 32P-post-labeling method, and metal(loid)s with an inductively coupled plasma mass spectrometer. Unconditional logistic regression was employed to estimate the associations between individual exposures and NTDs. Least absolute shrinkage and selection operator (LASSO) penalized regression models were used to select a subset of exposures, while additive interaction models were used to identify interaction effects.
RESULTS:
In the single-exposure models, we found that eight PAHs, PAH-DNA adducts, and 28 metal(loid)s were associated with NTDs. Pyrene, selenium, molybdenum, cadmium, uranium, and rubidium were selected through LASSO regression and were statistically associated with NTDs in the multiple-exposure models. Women with high levels of pyrene and molybdenum or pyrene and selenium exhibited significantly increased risk of having offspring with NTDs, indicating that these combinations may have synergistic effects on the risk of NTDs.
CONCLUSION
Our findings suggest that individual PAHs and metal(loid)s, as well as their interactions, may be associated with the risk of NTDs, which warrants further investigation.
Humans
;
Neural Tube Defects/chemically induced*
;
Polycyclic Aromatic Hydrocarbons/adverse effects*
;
Female
;
Case-Control Studies
;
China/epidemiology*
;
Adult
;
Pregnancy
;
Environmental Pollutants
;
Maternal Exposure/adverse effects*
;
Metals/toxicity*
;
Young Adult
;
Risk Factors
4.Early prenatal exposure to air pollutants and congenital heart disease: a nested case-control study.
Zhao MA ; Weiqin LI ; Jicui YANG ; Yijuan QIAO ; Xue CAO ; Han GE ; Yue WANG ; Hongyan LIU ; Naijun TANG ; Xueli YANG ; Junhong LENG
Environmental Health and Preventive Medicine 2023;28():4-4
BACKGROUND:
Congenital heart disease (CHD) is one of the most common congenital malformations in humans. Inconsistent results emerged in the existed studies on associations between air pollution and congenital heart disease. The purpose of this study was to evaluate the association of gestational exposure to air pollutants with congenital heart disease, and to explore the critical exposure windows for congenital heart disease.
METHODS:
The nested case-control study collected birth records and the following health data in Tianjin Women and Children's Health Center, China. All of the cases of congenital heart disease from 2013 to 2015 were selected matching five healthy controls for each case. Inverse distance weighting was used to estimate individual exposure based on daily air pollution data. Furthermore, the conditional logistic regression with distributed lag non-linear model was performed to identify the association between gestational exposure to air pollution and congenital heart disease.
RESULTS:
A total of 8,748 mother-infant pairs were entered into the analysis, of which 1,458 infants suffered from congenital heart disease. For each 10 µg/m3 increase of gestational exposure to PM2.5, the ORs (95% confidence interval, 95%CI) ranged from 1.008 (1.001-1.016) to 1.013 (1.001-1.024) during the 1st-2nd gestation weeks. Similar weak but increased risks of congenital heart disease were associated with O3 exposure during the 1st week and SO2 exposure during 6th-7th weeks in the first trimester, while no significant findings for other air pollutants.
CONCLUSIONS
This study highlighted that gestational exposure to PM2.5, O3, and SO2 had lag effects on congenital heart disease. Our results support potential benefits for pregnancy women to the mitigation of air pollution exposure in the early stage, especially when a critical exposure time window of air pollutants may precede heart development.
Infant
;
Pregnancy
;
Child
;
Humans
;
Female
;
Air Pollutants/analysis*
;
Case-Control Studies
;
Prenatal Exposure Delayed Effects/epidemiology*
;
Heart Defects, Congenital/etiology*
;
China/epidemiology*
;
Particulate Matter/adverse effects*
;
Maternal Exposure/adverse effects*
5.Research progress on the relationship between air pollution and gestational diabetes.
Xiao Ling ZENG ; Qing CHEN ; Heng YANG ; Jia CAO ; Ni Ya ZHOU
Chinese Journal of Preventive Medicine 2023;57(2):159-165
Gestational diabetes mellitus (GDM) is one of the most common pregnancy complications and has serious implications for the health of mothers and their offspring. In recent years, studies have confirmed that air pollution is one of the main risk factors for diabetes, and there is increasing evidence that air pollution exposure is closely related to the occurrence of gestational diabetes. However, current studies on the association between air pollutant exposure and the incidence of gestational diabetes are inconsistent, and the window period of pollutant exposure is still unclear. Limited mechanistic studies suggest that airborne particulate matter and gaseous pollutants may affect GDM through multiple mechanisms, including inflammation, oxidative stress, disruption of adipokine secretion, and imbalance of intestinal flora. This review summarizes the relationship between air pollutant exposure and the incidence of GDM in recent years, as well as the possible molecular mechanism of the occurrence and development of GDM caused by air pollutants, in order to provide scientific basis for preventing pollutant exposure, reducing the risk of GDM, improving maternal and fetal outcomes and improving the quality of the birth population.
Pregnancy
;
Female
;
Humans
;
Diabetes, Gestational/epidemiology*
;
Air Pollution/analysis*
;
Air Pollutants/analysis*
;
Particulate Matter/analysis*
;
Risk Factors
;
Maternal Exposure/adverse effects*
6.Correlation analysis between prenatal exposure of per-/polyfluoroalkyl compounds and neonatal outcome.
Chen Ye XU ; Wei Tong LI ; Yong Hong TIAN
Chinese Journal of Preventive Medicine 2023;57(3):362-370
Objective: To investigate the correlation between the prenatal exposure of per-/polyfluoroalkyl substances (PFASs) and the neonatal outcome. Methods: A total of 506 maternal infant cohort samples were collected in Hangzhou, Zhejiang province from 2020 to 2021. The exposure levels of seven PFASs in maternal serum before delivery were detected by solid-phase extraction-ultra performance liquid chromatography tandem mass spectrometry. Multivariable linear regression model was used to analyze the influence of prenatal exposure of PFASs on birth weight, birth length and Apgar score. Results: The maternal age, prenatal body mass index and gestation age were (31.3±4.3) years old, (26.7±3.2) kg/m2 and (265.0±28.3) days, respectively. The birth weight, birth length and scores of Apgar-1 and Apgar-5 were (3.1±0.8) kg, (49.3±2.9) cm, (9.88±0.47) points and (9.99±0.13) points, respectively. PFASs were widely distributed in maternal serum, with the highest concentration of (18.453±19.557) ng/ml, (6.756±9.379) ng/ml and (5.057±8.555) ng/ml for perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS) and 6∶2 chlorinated polyfluorinated ether sulfonate (Cl-PFESA), respectively. Maternal age, parity and delivery mode were associated with the exposure level of PFASs (P<0.05). Subgroup analysis showed that PFOS had negative effects on birth weight (β=-0.958), birth length (β=-0.073) and Apgar-5 score (β=-0.288) for neonates in the low birth weight (LBW) group. 6∶2 Cl-PFESA and 8∶2 Cl-PFESA inhibited the birth weight (β=-0.926; β=-0.552) and length (β=-0.074; β=-0.045) of newborn in the LBW group. In addition, 4∶2 fluorotelomer sulfonate (FTS) was associated with increased birth weight (β=0.111) and decreased Apgar-5 score (β=-0.030) in the normal weight group. Conclusion: Prenatal exposure to PFASs is associated with birth weight, birth length and Apgar-5 score. It is necessary to continue to pay attention to the impact of PFASs on fetal growth and development through maternal-fetal transmission.
Pregnancy
;
Infant, Newborn
;
Female
;
Humans
;
Adult
;
Birth Weight
;
Prenatal Exposure Delayed Effects
;
Alkanesulfonic Acids/analysis*
;
Alkanesulfonates/analysis*
;
Fluorocarbons/analysis*
;
Ethers/analysis*
;
Ethyl Ethers/analysis*
;
Environmental Pollutants/analysis*
;
Maternal Exposure
7.Maternal nutritional factors and environmental exposure in early life and childhood atopic dermatitis.
Ying YE ; Li Min DOU ; Liu Hui WANG
Chinese Journal of Preventive Medicine 2023;57(9):1489-1496
Atopic dermatitis(AD)is a chronic, recurrent, inflammatory skin disease in children. The disease is characterized by dryness, chronic eczema-like lesions and obvious itching, seriously affecting the quality of life of children and their families. The pathogenesis of AD is not yet to be clear, and it might be the interaction of genetic susceptibility and environmental exposure to induce skin barrier impairment and immune system dysfunction. In recent years, the role of maternal factors or intrauterine environment exposure on childhood allergic diseases has been attracted attention, and the hypothesis that allergic diseases originate from the fetal period has been postulated. Maternal exposures called "early life exposure", such as nutritional factors during pregnancy (folate, vitamin D, vitamin E and polyunsaturated fatty acid) and tobacco exposure, home environmental exposure may be related with childhood atopic dermatitis. This article would focus on the recent research about maternal nutritional factors and family environmental exposure during pregnancy on offspring's atopic dermatitis.
Child
;
Female
;
Pregnancy
;
Humans
;
Dermatitis, Atopic
;
Quality of Life
;
Environmental Exposure/adverse effects*
;
Maternal Exposure/adverse effects*
;
Family
8.Maternal mobile phone screen time during pregnancy and children's internalizing and externalizing behavioral problems.
Han LI ; Juan TONG ; Fang Biao TAO
Chinese Journal of Preventive Medicine 2023;57(12):2196-2200
The behavioral problems of children and adolescents are becoming more and more serious, and the prevalence rate is increasing year by year. The overall trend is increasing, which has become one of the important public health issues of global concern. There are many influencing factors for behavioral problems in children and adolescents, including genetic, psychosocial, family and early life environment. Among them, maternal screen exposure during pregnancy is a contributing factor that deserves attention and has practical intervention significance. This study systematically evaluated the association between maternal mobile phone screen time during pregnancy and children's internalizing and externalizing behavioral problems, its potential biological mechanisms and relevant intervention measures, in order to create a good intrauterine environment for fetal neurodevelopment and further reduce the occurrence of children's behavioral problems.
Adolescent
;
Child
;
Female
;
Pregnancy
;
Humans
;
Problem Behavior
;
Screen Time
;
Cell Phone
;
Family
;
Maternal Exposure
9.Maternal nutritional factors and environmental exposure in early life and childhood atopic dermatitis.
Ying YE ; Li Min DOU ; Liu Hui WANG
Chinese Journal of Preventive Medicine 2023;57(9):1489-1496
Atopic dermatitis(AD)is a chronic, recurrent, inflammatory skin disease in children. The disease is characterized by dryness, chronic eczema-like lesions and obvious itching, seriously affecting the quality of life of children and their families. The pathogenesis of AD is not yet to be clear, and it might be the interaction of genetic susceptibility and environmental exposure to induce skin barrier impairment and immune system dysfunction. In recent years, the role of maternal factors or intrauterine environment exposure on childhood allergic diseases has been attracted attention, and the hypothesis that allergic diseases originate from the fetal period has been postulated. Maternal exposures called "early life exposure", such as nutritional factors during pregnancy (folate, vitamin D, vitamin E and polyunsaturated fatty acid) and tobacco exposure, home environmental exposure may be related with childhood atopic dermatitis. This article would focus on the recent research about maternal nutritional factors and family environmental exposure during pregnancy on offspring's atopic dermatitis.
Child
;
Female
;
Pregnancy
;
Humans
;
Dermatitis, Atopic
;
Quality of Life
;
Environmental Exposure/adverse effects*
;
Maternal Exposure/adverse effects*
;
Family
10.Maternal mobile phone screen time during pregnancy and children's internalizing and externalizing behavioral problems.
Han LI ; Juan TONG ; Fang Biao TAO
Chinese Journal of Preventive Medicine 2023;57(12):2196-2200
The behavioral problems of children and adolescents are becoming more and more serious, and the prevalence rate is increasing year by year. The overall trend is increasing, which has become one of the important public health issues of global concern. There are many influencing factors for behavioral problems in children and adolescents, including genetic, psychosocial, family and early life environment. Among them, maternal screen exposure during pregnancy is a contributing factor that deserves attention and has practical intervention significance. This study systematically evaluated the association between maternal mobile phone screen time during pregnancy and children's internalizing and externalizing behavioral problems, its potential biological mechanisms and relevant intervention measures, in order to create a good intrauterine environment for fetal neurodevelopment and further reduce the occurrence of children's behavioral problems.
Adolescent
;
Child
;
Female
;
Pregnancy
;
Humans
;
Problem Behavior
;
Screen Time
;
Cell Phone
;
Family
;
Maternal Exposure

Result Analysis
Print
Save
E-mail