1.Potential effect of endothelial progenitor cells on pentylenetetrazole-induced seizures in rats: an evaluation of relevant lncRNAs.
Shimaa O ALI ; Nancy N SHAHIN ; Marwa M SAFAR ; Sherine M RIZK
Journal of Zhejiang University. Science. B 2025;26(8):789-804
OBJECTIVES:
The use of stem cells is a promising strategy for seizure treatment owing to their unique characteristics. We investigated the role of endothelial progenitor cells (EPCs) in a pentylenetetrazole (PTZ)-induced rat seizure model. A selected panel of long noncoding RNAs (lncRNAs), which maintain an elaborate balance in brain neural regulatory networks as well as the autophagy pathway, was also targeted.
METHODS:
The impact of intravenously administered EPCs on PTZ-induced kindling in rats was evaluated by measuring the expression of neuronal damage markers, neurotrophic factors, and relevant lncRNA genes. Rat behavior was assessed using Y-maze test and open field test (OFT).
RESULTS:
EPCs mitigated seizure-associated neurological damage and reversed PTZ-induced working memory and locomotor activity deficits, as evidenced by improved performance in the Y-maze test and OFT. EPC treatment reversed the downregulation of the expression of the lncRNAs Evf2, Pnky, Dlx1, APF, HOTAIR, and FLJ11812. EPCs also boosted vascular endothelial growth factor (VEGF) expression. The ameliorative effect achieved by EPCs was comparable to that produced by valproate.
CONCLUSIONS
These findings indicate that EPCs ameliorate kindling epileptic seizures and their associated abnormalities and that the effect of EPCs may be mediated via the upregulation of certain regulatory lncRNAs.
Animals
;
Pentylenetetrazole
;
RNA, Long Noncoding
;
Seizures/therapy*
;
Rats
;
Male
;
Endothelial Progenitor Cells/transplantation*
;
Rats, Sprague-Dawley
;
Kindling, Neurologic
;
Vascular Endothelial Growth Factor A/metabolism*
;
Disease Models, Animal
2. Rosmarinic acid attenuates hepatic fibrogenesis via suppression of hepatic stellate cell activation/proliferation and induction of apoptosis
Naglaa M. EL-LAKKANY ; Walaa H. EL-MAADAWY ; Sayed H. SEIF EL-DIN ; Olfat A. HAMMAM ; Salwa H. MOHAMED ; Shahira M. EZZAT ; Marwa M. SAFAR ; Samira SALEH
Asian Pacific Journal of Tropical Medicine 2017;10(5):444-453
Objective To investigate the antifibrotic role of rosmarinic acid (RA), a natural polyphenolic compound, on HSCs activation/proliferation and apoptosis in vitro and in vivo. Methods The impact of RA on stellate cell line (HSC-T6) proliferation, activation and apoptosis was assessed along with its safety on primary hepatocytes. In vivo, rats were divided into: (i) normal; (ii) thioacetamide (TAA)-intoxicated rats for 12 weeks; (iii) TAA + silymarin or (iv) TAA + RA. At the end of experiment, liver functions, oxidative stress, inflammatory and profibrogenic markers, tissue inhibitor metalloproteinases type-1 (TIMP-1) and hydroxyproline (HP) levels were evaluated. Additionally, liver histopathology and immunohistochemical examinations of alpha-smooth muscle actin (α-SMA), caspase-3 and proliferation cellular nuclear antigen (PCNA) were determined. Results RA exhibited anti-proliferative effects on cultured HSCs in a time and concentration dependent manner showing an IC

Result Analysis
Print
Save
E-mail