1.Joining the Call to End Nuclear Weapons, Before They End U
Jose Florencio F Lapeñ ; a
Philippine Journal of Otolaryngology Head and Neck Surgery 2025;40(1):4-5
The Philippine Journal of Otolaryngology Head and Neck Surgerypreviously co published two guest editorials, on “Reducing the Risks of Nuclear War— the Role of Health Professionals”1and “Time to Treat the Climate and Nature Crisis as One Indivisible Global Health Emergency”2that addressed dual potentially catastrophic concerns that both place us “on the brink.”3
By co-publishing these guest editorials, the Philippine Journal of Otolaryngology Head and Neck Surgery joined the call for “health professional associations to inform their members worldwide about the threat to human survival and to join with the International Physicians for the Prevention of Nuclear War (IPPNW) to support efforts to reduce the near-term risks of nuclear war.”1As enumerated in the editorial,1we urged three immediate steps that should be taken by nuclear-armed states and their allies: 1) adopt a no first use policy;42) take their nuclear weapons off hair-trigger alert; and 3) urge all states involved in current conflicts to pledge publicly and unequivocally that they will not use nuclear weapons in these conflicts.It is alarming that noprogress has been made on these measures.
Thus, on our 44th Anniversary, we join over 150 scholarly scientific journals worldwide in co-publishing another Guest Editorial on “Ending Nuclear Weapons, Before They End Us.”5We call on the World Health Assembly (WHA) to vote this May on re establishing a mandate for the World Health Organization (WHO) to address the consequences of nuclear weapons and war,6and urge health professionals and their associations (including otolaryngologists – head and neck surgeons, all surgeons and physicians, and the Philippine Society of Otolaryngology – Head and Neck Surgery, Philippine College of Surgeons, Philippine College of Physicians,
Philippine Academy of Family Physicians, Philippine Pediatric Society, Philippine Obstetrical and Gynecologic Society, Philippine Society of Anesthesiology, Philippine College of Radiology, Philippine Society of Pathologists, other specialty and subspecialty societies, and the Philippine Medical Association) to urge the Philippine Government to support such a mandate and support the new United Nations (UN) comprehensive study on the effects of nuclear war.7
War ; Atomic Energy ; Radiation ; Nuclear Weapons
3.Ending nuclear weapons, before they end us
Kamran Abbasi ; Parveen Ali ; Virginia Barbour ; Marion Birch ; Inga Blum ; Peter Doherty ; Andy Haines ; Ira Helfand ; Richard Horton ; Kati Juva ; José ; Florencio F. Lapeñ ; a, Jr. ; Robert Mash ; Olga Mironova ; Arun Mitra ; Carlos Monteiro ; Elena N. Naumova ; David Onazi ; Tilman Ruff ; Peush Sahni ; James Tumwine ; Carlos Umañ ; a ; Paul Yonga ; Joe Thomas ; Chris Zielinski
Philippine Journal of Otolaryngology Head and Neck Surgery 2025;40(1):6-8
4.Artificial intelligence-enabled discovery of a RIPK3 inhibitor with neuroprotective effects in an acute glaucoma mouse model.
Xing TU ; Zixing ZOU ; Jiahui LI ; Simiao ZENG ; Zhengchao LUO ; Gen LI ; Yuanxu GAO ; Kang ZHANG
Chinese Medical Journal 2025;138(2):172-184
BACKGROUND:
Retinal ganglion cell (RGC) death caused by acute ocular hypertension is an important characteristic of acute glaucoma. Receptor-interacting protein kinase 3 (RIPK3) that mediates necroptosis is a potential therapeutic target for RGC death. However, the current understanding of the targeting agents and mechanisms of RIPK3 in the treatment of glaucoma remains limited. Notably, artificial intelligence (AI) technologies have significantly advanced drug discovery. This study aimed to discover RIPK3 inhibitor with AI assistance.
METHODS:
An acute ocular hypertension model was used to simulate pathological ocular hypertension in vivo . We employed a series of AI methods, including large language and graph neural network models, to identify the target compounds of RIPK3. Subsequently, these target candidates were validated using molecular simulations (molecular docking, absorption, distribution, metabolism, excretion, and toxicity [ADMET] prediction, and molecular dynamics simulations) and biological experiments (Western blotting and fluorescence staining) in vitro and in vivo .
RESULTS:
AI-driven drug screening techniques have the potential to greatly accelerate drug development. A compound called HG9-91-01, identified using AI methods, exerted neuroprotective effects in acute glaucoma. Our research indicates that all five candidates recommended by AI were able to protect the morphological integrity of RGC cells when exposed to hypoxia and glucose deficiency, and HG9-91-01 showed a higher cell survival rate compared to the other candidates. Furthermore, HG9-91-01 was found to protect the retinal structure and reduce the loss of retinal layers in an acute glaucoma model. It was also observed that the neuroprotective effects of HG9-91-01 were highly correlated with the inhibition of PANoptosis (apoptosis, pyroptosis, and necroptosis). Finally, we found that HG9-91-01 can regulate key proteins related to PANoptosis, indicating that this compound exerts neuroprotective effects in the retina by inhibiting the expression of proteins related to apoptosis, pyroptosis, and necroptosis.
CONCLUSION
AI-enabled drug discovery revealed that HG9-91-01 could serve as a potential treatment for acute glaucoma.
Animals
;
Glaucoma/metabolism*
;
Neuroprotective Agents/pharmacology*
;
Mice
;
Receptor-Interacting Protein Serine-Threonine Kinases/metabolism*
;
Artificial Intelligence
;
Retinal Ganglion Cells/metabolism*
;
Disease Models, Animal
;
Molecular Docking Simulation
;
Mice, Inbred C57BL
;
Male
5.Advancements in herbal medicine-based nanozymes for biomedical applications.
Mei YANG ; Zhichao DENG ; Yuanyuan ZHU ; Chenxi XU ; Chenguang DING ; Yujie ZHANG ; Mingxin ZHANG ; Mingzhen ZHANG
Chinese Medical Journal 2025;138(9):1037-1049
Nanozymes are a distinct category of nanomaterials that exhibit catalytic properties resembling those of enzymes such as peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Nanozymes derived from Chinese herbal medicines exhibit the catalytic functions of their enzyme mimics, while retaining the specific medicinal properties of the herb (termed "herbzymes"). These nanozymes can be categorized into three main groups based on their method of synthesis: herb carbon dot nanozymes, polyphenol-metal nanozymes, and herb extract nanozymes. The reported catalytic activities of herbzymes include POD, SOD, CAT, and GPx. This review presents an overview of the catalytic activities and potential applications of nanozymes, introduces the novel concept of herbzymes, provides a comprehensive review of their classification and synthesis, and discusses recent advances in their biomedical applications. Furthermore, we also discuss the significance of research into herbzymes, including the primary challenges faced and future development directions.
Nanostructures/chemistry*
;
Humans
;
Herbal Medicine/methods*
;
Superoxide Dismutase/chemistry*
;
Catalase/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Catalysis
;
Glutathione Peroxidase/chemistry*
6.A method for determining spatial resolution of phantom based on automatic contour delineation.
Ying LIU ; Minghao SUN ; Haowei ZHANG ; Haikuan LIU
Journal of Biomedical Engineering 2025;42(2):263-271
In this study, we propose an automatic contour outlining method to measure the spatial resolution of homemade automatic tube current modulation (ATCM) phantom by outlining the edge contour of the phantom image, selecting the region of interest (ROI), and measuring the spatial resolution characteristics of computer tomography (CT) phantom image. Specifically, the method obtains a binarized image of the phantom outlined by an automated fast region convolutional neural network (AFRCNN) model, measures the edge spread function (ESF) of the CT phantom with different tube currents and layer thicknesses, and differentiates the ESF to obtain the line spread function (LSF). Finally, the values passing through the zeros are normalized by the Fourier transform to obtain the CT spatial resolution index (RI) for the automatic measurement of the modulation transfer function (MTF). In this study, this algorithm is compared with the algorithm that uses polymethylmethacrylate (PMMA) to measure the MTF of the phantom edges to verify the feasibility of this method, and the results show that the AFRCNN model not only improves the efficiency and accuracy of the phantom contour outlining, but also is able to obtain a more accurate spatial resolution value through automated segmentation. In summary, the algorithm proposed in this study is accurate in spatial resolution measurement of phantom images and has the potential to be widely used in real clinical CT images.
Phantoms, Imaging
;
Tomography, X-Ray Computed/instrumentation*
;
Algorithms
;
Neural Networks, Computer
;
Image Processing, Computer-Assisted/methods*
;
Humans
;
Polymethyl Methacrylate
7.Research progress on enhancing osseointegration properties of polyetheretherketone implants through various modification methods.
Shilai LIU ; Xiaoke FENG ; Chunxia CHEN
Journal of Biomedical Engineering 2025;42(2):417-422
This review article summarizes the current modification methods employed to enhance the osseointegration properties of polyetheretherketone (PEEK), a novel biomaterial. Our analysis highlights that strategies such as surface treatment, surface modification, and the incorporation of bioactive composites can markedly improve the bioactivity of PEEK surfaces, thus facilitating their effective integration with bone tissue. However, to ensure widespread application of PEEK in the medical field, particularly in oral implantology, additional experiments and long-term clinical evaluations are required. Looking ahead, future research should concentrate on developing innovative modification techniques and assessment methodologies to further optimize the performance of PEEK implant materials. The ultimate goal is to provide the clinical setting with even more reliable solutions.
Benzophenones
;
Ketones/chemistry*
;
Polyethylene Glycols/chemistry*
;
Osseointegration
;
Humans
;
Polymers
;
Biocompatible Materials/chemistry*
;
Surface Properties
;
Prostheses and Implants
;
Dental Implants
8.Application of nanomaterials-enhanced magnetic resonance imaging in precise diagnosis of pan-vascular diseases.
Yao LI ; Peisen ZHANG ; Ni ZHANG
Journal of Biomedical Engineering 2025;42(5):1092-1098
Pan-vascular diseases encompass a range of systemic conditions characterized by sharing a common pathologic basis of vascular deterioration. Due to the complexity of these diseases, a thorough understanding on their similarities and differences is essential for optimizing diagnosis and treatment strategies. Magnetic resonance imaging (MRI), as one of the commonly used medical imaging techniques, has been widely applied in the diagnosis of pan-vascular diseases. Particularly, the integration of MRI with contrast agents and multi-parameter imaging techniques significantly enhances diagnostic accuracy, reducing the likelihood of missed or incorrect diagnoses. Recently, a variety of nano-magnetic resonance contrast agents have been developed and applied to the magnetic resonance imaging diagnosis of diseases. These nanotechnology-based contrast agents provide multiple advantages, ensuring more precise and forward-looking imaging of pan-vascular conditions. In this review, the diverse application strategies of nanomaterials-enhanced MRI techniques in the diagnosis of pan-vascular diseases were systematically summarized, by classifying them into the commonly used MRI sequences in clinical practice. Additionally, the potential advantages and challenges associated with the clinical translation of nanomaterial-enhanced MRI were also discussed. This review not only offers a novel perspective on the precise diagnosis of pan-vascular diseases, but also serves as a valuable reference for future clinical practice and research in the field.
Humans
;
Magnetic Resonance Imaging/methods*
;
Contrast Media
;
Vascular Diseases/diagnostic imaging*
;
Nanostructures
9.Research progress of bioactive scaffolds in repair and regeneration of osteoporotic bone defects.
Yuangang WU ; Kaibo SUN ; Yi ZENG ; Bin SHEN
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(1):100-105
OBJECTIVE:
To summarize the research progress of bioactive scaffolds in the repair and regeneration of osteoporotic bone defects.
METHODS:
Recent literature on bioactive scaffolds for the repair of osteoporotic bone defects was reviewed to summarize various types of bioactive scaffolds and their associated repair methods.
RESULTS:
The application of bioactive scaffolds provides a new idea for the repair and regeneration of osteoporotic bone defects. For example, calcium phosphate ceramics scaffolds, hydrogel scaffolds, three-dimensional (3D)-printed biological scaffolds, metal scaffolds, as well as polymer material scaffolds and bone organoids, have all demonstrated good bone repair-promoting effects. However, in the pathological bone microenvironment of osteoporosis, the function of single-material scaffolds to promote bone regeneration is insufficient. Therefore, the design of bioactive scaffolds must consider multiple factors, including material biocompatibility, mechanical properties, bioactivity, bone conductivity, and osteogenic induction. Furthermore, physical and chemical surface modifications, along with advanced biotechnological approaches, can help to improve the osteogenic microenvironment and promote the differentiation of bone cells.
CONCLUSION
With advancements in technology, the synergistic application of 3D bioprinting, bone organoids technologies, and advanced biotechnologies holds promise for providing more efficient bioactive scaffolds for the repair and regeneration of osteoporotic bone defects.
Humans
;
Tissue Scaffolds/chemistry*
;
Bone Regeneration
;
Osteoporosis/therapy*
;
Tissue Engineering/methods*
;
Biocompatible Materials/chemistry*
;
Printing, Three-Dimensional
;
Calcium Phosphates/chemistry*
;
Osteogenesis
;
Ceramics
;
Cell Differentiation
;
Hydrogels
;
Bioprinting
;
Bone and Bones
10.Research progress in three-dimensional-printed bone scaffolds combined with vascularized tissue flaps for segmental bone defect reconstruction.
Qida DUAN ; Hongyun SHAO ; Ning LUO ; Fuyang WANG ; Liangliang CHENG ; Jiawei YING ; Dewei ZHAO
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(5):639-646
OBJECTIVE:
To review and summarize the research progress on repairing segmental bone defects using three-dimensional (3D)-printed bone scaffolds combined with vascularized tissue flaps in recent years.
METHODS:
Relevant literature was reviewed to summarize the application of 3D printing technology in artificial bone scaffolds made from different biomaterials, as well as methods for repairing segmental bone defects by combining these scaffolds with various vascularized tissue flaps.
RESULTS:
The combination of 3D-printed artificial bone scaffolds with different vascularized tissue flaps has provided new strategies for repairing segmental bone defects. 3D-printed artificial bone scaffolds include 3D-printed polymer scaffolds, bio-ceramic scaffolds, and metal scaffolds. When these scaffolds of different materials are combined with vascularized tissue flaps ( e.g., omental flaps, fascial flaps, periosteal flaps, muscular flaps, and bone flaps), they provide blood supply to the inorganic artificial bone scaffolds. After implantation into the defect site, the scaffolds not only achieve structural filling and mechanical support for the bone defect area, but also promote osteogenesis and vascular regeneration. Additionally, the mechanical properties, porous structure, and biocompatibility of the 3D-printed scaffold materials are key factors influencing their osteogenic efficiency. Furthermore, loading the scaffolds with active components such as osteogenic cells and growth factors can synergistically enhance bone defect healing and vascularization processes.
CONCLUSION
The repair of segmental bone defects using 3D-printed artificial bone scaffolds combined with vascularized tissue flap transplantation integrates material science technologies with surgical therapeutic approaches, which will significantly improve the clinical treatment outcomes of segmental bone defect repair.
Printing, Three-Dimensional
;
Tissue Scaffolds
;
Humans
;
Surgical Flaps/blood supply*
;
Tissue Engineering/methods*
;
Plastic Surgery Procedures/methods*
;
Bone and Bones/surgery*
;
Biocompatible Materials
;
Bone Regeneration
;
Bone Transplantation/methods*
;
Bone Substitutes
;
Osteogenesis


Result Analysis
Print
Save
E-mail