1.Study on the correlation between MASP-2 and diseases.
Yu CAO ; Yan ZHOU ; Tianjun JIA
Chinese Journal of Cellular and Molecular Immunology 2025;41(7):661-666
Mannose-binding lectin-associated serine protease 2(MASP-2) is a member of serine protease family and plays a crucial role in activating the complement lectin pathway. When mannose residues on the surface of a pathogen are recognized by mannose-binding lectins (MBL) or fibrinogen collagen (FCN), MASP-2 is activated. This activation then triggers the cleavage of C4 and C2 to form C3 convertase, thereby initiating the lectin pathway of the complement system. Numerous studies have demonstrated that MASP-2 gene polymorphisms and serum levels are closely related with various diseases, including tumors, infectious diseases, autoimmune diseases and so on. In this review, we summarize the relationships between MASP-2 and tumors, infectious diseases, autoimmune diseases. We aim to provide a theoretical basis for the early diagnosis, prognosis evaluation and clinical treatment of various diseases.
Humans
;
Mannose-Binding Protein-Associated Serine Proteases/metabolism*
;
Neoplasms/metabolism*
;
Autoimmune Diseases/genetics*
;
Animals
;
Polymorphism, Genetic
;
Communicable Diseases/genetics*
2.Plasma levels of mannan-binding lectin-associated serine protease 2 in children with upper respiratory tract infection.
Simin XIONG ; Na ZHAO ; Yurong QIU ; Liyun ZHANG ; Daming ZUO ; Zhengliang CHEN
Journal of Southern Medical University 2015;35(6):888-893
OBJECTIVETo explore the significance of plasma levels of mannan-binding lectin (MBL)-associated serine protease 2 (MASP2) in children with upper respiratory tract infection (URTI).
METHODSA total of 103 children with URTI and 35 healthy children were examined for plasma levels of MASP2 and C-reactive protein (CRP). According to CRP levels, white blood cell count (WBC), stage of infection, and administration of treatments, the children with URTI were divided into the elevated CRP group (n=48) and the normal CRP group (n=54), elevated WBC group (n=61) and normal WBC group (n=40), the early stage of infection without treatment group (n=68) and mid-late stage of infection with treatment group (n=35).
RESULTSPlasma MASP2 levels was significantly higher in URTI group than in the healthy control group (P<0.001) and showed a close correlation with age (r=0.302, P<0.01). Plasma MASP2 level was significantly correlated with CRP level in elevated CRP group (r=0.310, P<0.05) but not in normal CRP group (P>0.05), correlated with WBC in elevated WBC group (r=0.392, P<0.01) but not in normal WBC group (P>0.05), and was significantly higher in early stage infection without treatment group than in mid-late stage of infection with treatment group (P<0.01). MASP2, MBL2 and CRP genes had a common binding site for the transcription factor HNF-4α.
CONCLUSIONSMASP2 may be an acute-phase protein, and its plasma level might serve as a new reference index in the diagnosis of URTI in children.
C-Reactive Protein ; metabolism ; Case-Control Studies ; Child ; Humans ; Leukocyte Count ; Mannose-Binding Protein-Associated Serine Proteases ; metabolism ; Respiratory Tract Infections ; blood
3.Specific interaction of hepatitis C virus glycoproteins with mannan binding lectin inhibits virus entry.
Kristelle S BROWN ; Michael J KEOGH ; Ania M OWSIANKA ; Richard ADAIR ; Arvind H PATEL ; James N ARNOLD ; Jonathan K BALL ; Robert B SIM ; Alexander W TARR ; Timothy P HICKLING
Protein & Cell 2010;1(7):664-674
Mannan-binding lectin (MBL) is a soluble innate immune protein that binds to glycosylated targets. MBL acts as an opsonin and activates complement, contributing to the destruction and clearance of infecting microorganisms. Hepatitis C virus (HCV) encodes two envelope glycoproteins E1 and E2, expressed as non-covalent E1/E2 heterodimers in the viral envelope. E1 and E2 are potential ligands for MBL. Here we describe an analysis of the interaction between HCV and MBL using recombinant soluble E2 ectodomain fragment, the full-length E1/E2 heterodimer, expressed in vitro, and assess the effect of this interaction on virus entry. A binding assay using antibody capture of full length E1/E2 heterodimers was used to demonstrate calcium dependent, saturating binding of MBL to HCV glycoproteins. Competition with various saccharides further confirmed that the interaction was via the lectin domain of MBL. MBL binds to E1/E2 representing a broad range of virus genotypes. MBL was shown to neutralize the entry into Huh-7 cells of HCV pseudoparticles (HCVpp) bearing E1/E2 from a wide range of genotypes. HCVpp were neutralized to varying degrees. MBL was also shown to neutralize an authentic cell culture infectious virus, strain JFH-1 (HCVcc). Furthermore, binding of MBL to E1/E2 was able to activate the complement system via MBL-associated serine protease 2. In conclusion, MBL interacts directly with HCV glycoproteins, which are present on the surface of the virion, resulting in neutralization of HCV particles.
Binding, Competitive
;
Glycosylation
;
Hepacivirus
;
genetics
;
pathogenicity
;
physiology
;
Humans
;
Mannose-Binding Lectin
;
metabolism
;
Mannose-Binding Protein-Associated Serine Proteases
;
metabolism
;
Monosaccharides
;
metabolism
;
Protein Binding
;
Protein Multimerization
;
Tumor Cells, Cultured
;
Viral Envelope Proteins
;
metabolism
;
Virion
;
pathogenicity
;
physiology
;
Virus Internalization

Result Analysis
Print
Save
E-mail