1.HAPLN1 secreted by synovial fibroblasts in rheumatoid arthritis promotes macrophage polarization towards the M1 phenotype.
Chenggen LUO ; Kun HUANG ; Xiaoli PAN ; Yong CHEN ; Yanjuan CHEN ; Yunting CHEN ; Mang HE ; Mei TIAN
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):413-419
Objective To investigate the effects of hyaluronic acid and proteoglycan-linked protein 1 (HAPLN1) secreted by synovial fibroblasts (FLS) on the polarization of macrophages (Mϕ) in rheumatoid arthritis (RA). Methods Human monocytic leukemia cells (THP-1) were differentiated into Mϕ, which were subsequently exposed to recombinant HAPLN1 (rHAPLN1). RA-FLS were transfected separately with HAPLN1 overexpression plasmid (HAPLN1OE) or small interfering RNA targeting HAPLN1 (si-HAPLN1), and then co-cultured with Mϕ to establish a co-culture model. The viability of Mϕ was assessed using the CCK-8 assay, and the proportions of pro-inflammatory M1-type and anti-inflammatory M2-type Mϕ were analyzed by flow cytometry. Additionally, the expression levels of inflammatory markers, including interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), and inducible nitric oxide synthase (iNOS), were quantified using quantitative real-time PCR and Western blot analysis. Results The viability of Mϕ was increased in the rHAPLN1 group compared to the control group. Furthermore, both the M1/Mϕ ratio and inflammatory factor levels were elevated in the rHAPLN1 and HAPLN1OE groups. In contrast, the si-HAPLN1 group exhibited a decrease in the M1/Mϕ ratio and inflammatory factor expression. Notably, the introduction of rHAPLN1 in rescue experiments further promoted Mϕ polarization towards the M1 phenotype. Conclusion HAPLN1, secreted by RA fibroblast-like synoviocytes (RA-FLS), enhances Mϕ polarization towards the M1 phenotype.
Humans
;
Arthritis, Rheumatoid/genetics*
;
Macrophages/immunology*
;
Fibroblasts/metabolism*
;
Phenotype
;
Extracellular Matrix Proteins/genetics*
;
Proteoglycans/genetics*
;
Synovial Membrane/cytology*
;
Tumor Necrosis Factor-alpha/genetics*
;
Interleukin-1beta/genetics*
;
Nitric Oxide Synthase Type II/genetics*
;
Cell Differentiation
;
Coculture Techniques
;
THP-1 Cells
2.LncRNA MALAT1 promotes hepatocellular carcinoma proliferation and invasion by regulating NEAT1 related exosomes secretion
Yuanyi MANG ; Li LI ; Jianghua RAN ; Shengning ZHANG ; Laibang LI ; Yingpeng ZHAO ; Yang GAO ; Jiaojiao ZHAO ; Xiangle HE
Chinese Journal of Hepatobiliary Surgery 2022;28(4):289-294
Objective:To investigate the correlations between expression of long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), nuclear-enriched abundant transcript 1 (NEAT1) and their functions on exosome secretion, proliferation and invasion in hepatocellular carcinoma (HCC).Methods:We used small interfering RNA of MALAT1 (si-MALAT1) to knockdown MALAT1 in HuH-7. At the meanwhile, cells which were transfected with si-NC were used as the negative control group. Expression of NEAT1, cell proliferation and invasion function were detected these two groups. HuH-7 cells were transfected with lentivirus NEAT1 over expressing vector (lv-NEAT1) or negative control (lv-control). Expression of exosomes secretion related genes were analyzed between lv-NEAT1 and lv-control groups. Cells of lv-NEAT1 were knockdown MALAT1 expression using si-MALAT1, which could be si-MALAT1+ lv-NEAT1 group. exosomes secretion was detected in si-NC, si-MALAT1 and si-MALAT1+ lv-NEAT1 group. We treated cells (si-MALAT1 group) with exosomes from cells with lv-NEAT1 or lv-control to divide cells as si-MALAT1+ exosomes of lv-NEAT1 cells and si-MALAT1+ exosomes of lv-control groups. Cell proliferation and invasion of cells were detected in two groups.Results:Low expression of NEAT1 were found in MALAT1 knockdown cells compared with si-NC group [(0.72±0.02) vs. (0.98±0.01), P<0.05]. Cells with MALAT1 knockdown shown diminished proliferation [(0.66±0.03) vs. (0.98±0.04), P<0.05)] and invasion [(88.33±7.26) vs. (147.70±13.62), P<0.05)]. Compared with si-NC group, CD9 and CD63 expression were decreased in exosomes of si-MALAT1 group. Compared with si-MALAT1 group, CD9 and CD63 expression was increased in exosomes of si-MALAT1+ lv-NEAT1 group. Compared with si-MALAT1+ exosomes of lv-control group, proliferation [(0.97±0.03) vs. (0.74±0.05), P<0.05)] and invasion [ (132.70±7.36) vs. (98.33±6.01), P<0.05) ] were increased in si-MALAT1+ exosomes of lv-NEAT1 group. Exosomes related genes expression including HSPA8 (5.53±0.31), SLC3A2 (0.32±0.07) and SLC7A5 (0.77±0.45) were changed in lv-NEAT1 group compared with lv-control group [(0.98±0.15), P<0.05]. Conclusion:MALAT1 induced exosomes secretion by NEAT1 and exosomes related genes regulation. This regulation might be related with increased proliferation and invasion function in HCC cells with MALAT1 and NEAT1 abnormal expression.
3.Risk prediction values of different score models for cerebral infarction after transient ischemic attack
Yingying WANG ; Na GUO ; Jinting HE ; Yankun SHAO ; Xiaoqun BAO ; Jing MANG ; Zhongxin XU
Journal of Jilin University(Medicine Edition) 2014;(4):851-854
Objective To evaluate the predictive values of ABCD,ABCD2 ,SPI-Ⅱ and ESSEN score models for the patients with high-risk transient ischemic attack (TIA)to develop to cerebral infarction in short and long term. Methods The ABCD, ABCD2 , SPI-Ⅱ and ESSEN scores of 235 cases of TIA patients were retrospectively analyzed.The incidence of cerebral infarction was followed up for 7 d and 1 year, and the receiver operating characteristic curve (ROC)was drawn to calculate the area under curve (AUC)to assess the accuracy of the score models,and compared with the original model and the relative risk (RR)value was calculated.Results The 7 d-incidence and 1 year-incidence of cerebral infarction in the 235 TIA patients were 9.36 % and 20.43%.The AUC of ABCD,ABCD2 ,SPI-Ⅱ and ESSEN models for 7 d were 0.70,0.74,0.67,and 0.62.The AUC of 1 year were 0.62,0.62,0.64,and 0.65.Compared with the orginal models,the RRs for 7 d of ABCD score model of the TIA patients in low,middle,and high risk groups were 0.09,0.92,and 0.72;the RRs of ABCD2 score model were 0.49,0.59,and 0.65;the RRs of SPI-Ⅱ score model were 0.58,0.87,and 0.55;the RRs of ESSEN score model were 0.11,0.18,and 0.55.Conclusion ABCD,ABCD2 ,SPI-Ⅱ and ESSEN score models can be used to assess the risk of cerebral infarction after TIA in Chinese population.The ABCD2 score model is of great value for short-term risk prediction,and the ESSEN score model is more value for long-term risk prediction.
4.Rapamycin combined with donor bone marrow-derived immature dendritic cells induces mouse skin allograft tolerance.
Si YU ; Xiaoshun HE ; Anbin HU ; Bi-mang FU ; Yi MA
Journal of Southern Medical University 2008;28(3):399-402
OBJECTIVETo investigate the synergic effects of rapamycin and donor bone marrow-derived immature dendritic cells (DCs) in inducing skin allograft tolerance in mice.
METHODSThe recipient BALB/c mice receiving transplantation of skin allograft from C57BL/6 mice were divided into control group (without perioperative treatments), rapamycin group (receiving rapamycin at 1 mg.kg(-1).d(-1) by gavage for 7 consecutive 7 days after skin transplantation), immature DC group (receiving an injection of donor bone marrow-derived immature DCs of 2 x 10(6) via tail vein before skin transplantation), combined group (receiving an injection of the DCs of 2 x 10(6) before transplantation and rapamycin at 1 mg.kg(-1).d(-1) for 7 consecutive days after transplantation). The survival time of the skin allograft was observed in each group.
RESULTSThe survival time of the skin allograft in the control, rapamycin, immature DC and immature DC +rapamycin groups were 6.9-/+1.9, 12.3-/+3.0, 17.0-/+3.4 and 20.8-/+3.6 days, respectively, showing significant differences among the groups (P<0.05), and SNK test also indicated significant differences between every two groups.
CONCLUSIONSRapamycin and donor bone marrow-derived immature DCs have synergic effects in inducing skin allograft tolerance in mice.
Animals ; Bone Marrow Cells ; cytology ; immunology ; Dendritic Cells ; immunology ; Graft Survival ; drug effects ; immunology ; Immunosuppressive Agents ; pharmacology ; Male ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Sirolimus ; pharmacology ; Skin Transplantation ; immunology ; methods ; Transplantation, Homologous
5.Culture and identification of mouse myeloid semimature dendritic cells.
Bi-mang FU ; Xiao-shun HE ; Si YU ; An-bin HU ; Yi MA ; Jie-fu HUANG
Acta Academiae Medicinae Sinicae 2008;30(4):430-435
OBJECTIVETo investigate the methods of culturing and identifying mouse myeloid semimature dendritic cell (smDC) in vitro.
METHODSMyeloid monocytes derived from 6-week-old C57 BL/6 mice were cultured in RPMI-1640 medium containing 10% fetal bovine serum, 2 ng/ml recombinant murine granulocyte macrophage-colony stimulating factor (GM-CSF), and 20 ng/ml recombinant murine interleukin (IL)-4 for 9 days. Then cells were incubated with 40 ng/ml tumor necrosis factor-alpha (TNF-alpha) for 24 hours to obtain smDC. Meanwhile, smDC was differentiated into mature dendritic cell (mDC) or immature dendritic cell (iDC) by treatment with 1 micro/m1 lipopolysaccharide (LPS) or without LPS. The morphological features of smDC were assayed by inverted microscopy and scanning electron microscopy. Surface markers such as CD11c, CD4O, CD8O, CD86, and MHC-II were tested by flow cytometry. IL-1beta, IL-6, IL-12, and IL-10 in the supernatant were tested by ELISA. The activation of allogene lymphocyte (BALB/c mice) stimulated by C57BL/6 myeloid smDC in mixed lymphocyte reaction was examined by Cell Counting Kit-8 in vitro.
RESULTSThe shape of smDC was round or oval-shaped, and the diameter of smDC was about 15 microm. The length of smDC dendrite was between 5 to 10 microm. smDC, iDC, and mDC all expressed high level of CD11 c. The expressions of MHC-II, CD40, CD80, and CD86 on smDC were higher than those of iDC and lower than those of mDC. IL-1beta, IL-6, and IL-12 secretion of smDC was significantly lower than that of mDC (P < 0.01), and IL-12 was significantly lower than that of iDC (P < 0.05), while no significant difference of IL-1beta and IL-6 secretion was found between smDC and iDC (P > 0.05). Furthermore, IL-10 secretion was not significantly different among these three kinds of DCs (P > 0.05). The effect of allogene lymphocytes activation on smDC was significantly lower than that of mDC and positive control (P < 0.01), but had no significant difference when compared with that of iDC and negative control (P > 0.05).
CONCLUSIONSsmDC may be a relatively independent dendritic cell sub-population in terms of function and morphology. It is a feasible way to induce myeloid monocytes to differentiate into smDC using GM-CSF, IL-4, and TNF-alpha in vitro.
Animals ; Cell Culture Techniques ; Cell Differentiation ; Cells, Cultured ; Cytokines ; immunology ; Dendritic Cells ; cytology ; immunology ; Male ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Monocytes ; cytology ; immunology
6.Effect of the new human transcription factor hBKLF on the proliferation, differentiation of K562 cell line and hemoglobin synthesis.
Mang-Ju WANG ; Xiao-Yun MA ; Yong-Jin SHI ; Shu-Lan WU ; Fu-Chu HE
Journal of Experimental Hematology 2006;14(6):1083-1088
The human basic Krüppel-like factor (hBKLF) is a newly cloned human transcription factor from the cDNA library of fetal liver. It belongs to the Krüppel-like transcription factor family. Previous expression study showed that it is a hematopoietic related factor. This study was aimed to investigate the effect of hBKLF on cell proliferation, differentiation and hemoglobin synthesis by using K562 cell line as model. The sense and antisense expression plasmids of hBKLF were constructed, and transfected into K562 cells by lipofectamine. After G418 selection for 4 weeks, the cell line with stable expression of the gene was obtained. Then the hBKLF expression level, proliferation ability, colony formation and hemoglobin production were detected by RT-PCR and Western blot, MTT method, methyl cellulose semisolid culture method and benzidine test respectively. The morphologic change of cell was observed with inverted microscope. The results showed that the sense plasmid could increase hBKLF level and antisense plasmid could decrease hBKLF expression. When hBKLF level was down-regulated, K562 cells could proliferate more quickly and synthesize more hemoglobin. But there were no differences in colony formation ability and no apparent morphologic change. It is concluded that hBKLF can inhibit hematopoietic cell proliferation and hemoglobin synthesis. It is suggested that hBKLF plays an important role in the proliferation and differentiation of hematopoietic cells.
Animals
;
COS Cells
;
Cell Differentiation
;
physiology
;
Cell Proliferation
;
drug effects
;
Cell Transformation, Neoplastic
;
drug effects
;
Cercopithecus aethiops
;
Hemoglobins
;
biosynthesis
;
Humans
;
K562 Cells
;
Kruppel-Like Transcription Factors
;
biosynthesis
;
genetics
;
pharmacology
;
Transcription Factors
;
biosynthesis
;
genetics
;
Transfection

Result Analysis
Print
Save
E-mail