1.Imaging study on the relationship between anterior and posterior occlusal planes and temporomandibular osteoarthrosis.
Jiawei ZHONG ; Peidi FAN ; Shoushan HU ; Xinlin GAO ; Yijun LI ; Jun WANG ; Xin XIONG
West China Journal of Stomatology 2023;41(3):297-304
OBJECTIVES:
The aim of this study was to compare the anterior and posterior occlusal plane characteristics of patients with different temporomandibular joint osseous statuses.
METHODS:
A total of 306 patients with initial cone beam CT (CBCT) and cephalograms were included. They were divided into three groups on the basis of their temporomandibular joint osseous status: bilateral normal (BN) group, indeterminate for osteoarthrosis (I) group, and osteoarthrosis (OA) group. The anterior and posterior occlusal planes (AOP and POP) of the different groups were compared. Then, the regression equation was established after adjusting for confounding factors, and a correlation analysis between the occlusion planes and other parameters was performed.
RESULTS:
SNA, SNB, FMA, SN-MP, Ar-Go, and S-Go were correlated with the occlusal planes. Relative to the BN and I groups, the FH-OP of the OA group increased by 1.67° on the average, FH-POP increased by 1.42° on the average, and FH-AOP increased by 2.05° on the average.
CONCLUSIONS
The occlusal planes were steeper in the patients with temporomandibular osteoarthrosis than in the patients without it, and the mandible rotated downward and backward. The height of the mandibular ramus, the mandibular body length, and the posterior face height were small. In clinical practice, attention should be given to the potential risk of temporomandibular joint osteoarthrosis in such patients. In addition, SNB, FMA, SN-MP, Ar-Go, S-Go, and occlusal planes had moderate correlations.
Humans
;
Dental Occlusion
;
Cephalometry
;
Mandible
;
Temporomandibular Joint Disorders/diagnostic imaging*
;
Temporomandibular Joint/diagnostic imaging*
;
Osteoarthritis/diagnostic imaging*
;
Mandibular Condyle
2.Automated diagnostic classification with lateral cephalograms based on deep learning network model.
Qiao CHANG ; Shao Feng WANG ; Fei Fei ZUO ; Fan WANG ; Bei Wen GONG ; Ya Jie WANG ; Xian Ju XIE
Chinese Journal of Stomatology 2023;58(6):547-553
Objective: To establish a comprehensive diagnostic classification model of lateral cephalograms based on artificial intelligence (AI) to provide reference for orthodontic diagnosis. Methods: A total of 2 894 lateral cephalograms were collected in Department of Orthodontics, Capital Medical University School of Stomatology from January 2015 to December 2021 to construct a data set, including 1 351 males and 1 543 females with a mean age of (26.4± 7.4) years. Firstly, 2 orthodontists (with 5 and 8 years of orthodontic experience, respectively) performed manual annotation and calculated measurement for primary classification, and then 2 senior orthodontists (with more than 20 years of orthodontic experience) verified the 8 diagnostic classifications including skeletal and dental indices. The data were randomly divided into training, validation, and test sets in the ratio of 7∶2∶1. The open source DenseNet121 was used to construct the model. The performance of the model was evaluated by classification accuracy, precision rate, sensitivity, specificity and area under the curve (AUC). Visualization of model regions of interest through class activation heatmaps. Results: The automatic classification model of lateral cephalograms was successfully established. It took 0.012 s on average to make 8 diagnoses on a lateral cephalogram. The accuracy of 5 classifications was 80%-90%, including sagittal and vertical skeletal facial pattern, mandibular growth, inclination of upper incisors, and protrusion of lower incisors. The acuracy rate of 3 classifications was 70%-80%, including maxillary growth, inclination of lower incisors and protrusion of upper incisors. The average AUC of each classification was ≥0.90. The class activation heat map of successfully classified lateral cephalograms showed that the AI model activation regions were distributed in the relevant structural regions. Conclusions: In this study, an automatic classification model for lateral cephalograms was established based on the DenseNet121 to achieve rapid classification of eight commonly used clinical diagnostic items.
Male
;
Female
;
Humans
;
Young Adult
;
Adult
;
Artificial Intelligence
;
Deep Learning
;
Cephalometry
;
Maxilla
;
Mandible/diagnostic imaging*
3.Automatic determination of mandibular landmarks based on three-dimensional mandibular average model.
Zi Xiang GAO ; Yong WANG ; Ao Nan WEN ; Yu Jia ZHU ; Qing Zhao QIN ; Yun ZHANG ; Jing WANG ; Yi Jiao ZHAO
Journal of Peking University(Health Sciences) 2023;55(1):174-180
OBJECTIVE:
To explore an efficient and automatic method for determining the anatomical landmarks of three-dimensional(3D) mandibular data, and to preliminarily evaluate the performance of the method.
METHODS:
The CT data of 40 patients with normal craniofacial morphology were collected (among them, 30 cases were used to establish the 3D mandibular average model, and 10 cases were used as test datasets to validate the performance of this method in determining the mandibular landmarks), and the 3D mandibular data were reconstructed in Mimics software. Among the 40 cases of mandibular data after the 3D reconstruction, 30 cases that were more similar to the mean value of Chinese mandibular features were selected, and the size of the mandibular data of 30 cases was normalized based on the Procrustes analysis algorithm in MATLAB software. Then, in the Geomagic Wrap software, the 3D mandibular average shape model of the above 30 mandibular data was constructed. Through symmetry processing, curvature sampling, index marking and other processing procedures, a 3D mandible structured template with 18 996 semi-landmarks and 19 indexed mandibular anatomical landmarks were constructed. The open source non-rigid registration algorithm program Meshmonk was used to match the 3D mandible template constructed above with the tested patient's 3D mandible data through non-rigid deformation, and 19 anatomical landmark positions of the patient's 3D mandible data were obtained. The accuracy of the research method was evaluated by comparing the distance error of the landmarks manually marked by stomatological experts with the landmarks marked by the method of this research.
RESULTS:
The method of this study was applied to the data of 10 patients with normal mandibular morphology. The average distance error of 19 landmarks was 1.42 mm, of which the minimum errors were the apex of the coracoid process [right: (1.01±0.44) mm; left: (0.56±0.14) mm] and maximum errors were the anterior edge of the lowest point of anterior ramus [right: (2.52±0.95) mm; left: (2.57±1.10) mm], the average distance error of the midline landmarks was (1.15±0.60) mm, and the average distance error of the bilateral landmarks was (1.51±0.67) mm.
CONCLUSION
The automatic determination method of 3D mandibular anatomical landmarks based on 3D mandibular average shape model and non-rigid registration algorithm established in this study can effectively improve the efficiency of automatic labeling of 3D mandibular data features. The automatic determination of anatomical landmarks can basically meet the needs of oral clinical applications, and the labeling effect of deformed mandible data needs to be further tested.
Humans
;
Imaging, Three-Dimensional/methods*
;
Mandible/diagnostic imaging*
;
Software
;
Algorithms
;
Anatomic Landmarks/anatomy & histology*
4.Diversity of root canal morphology in mandibular first premolars and its clinical strategies.
Chinese Journal of Stomatology 2023;58(1):92-97
It is a basic prerequisite for the successful completion of endodontic treatment to thoroughly understand the root canal space anatomy. With the development of dental devices in dentistry, the root canal morphology of the mandibular first premolars can be presented in more detail. Before conducting root canal therapy on the mandibular first premolar with complex root canal morphology, it should be necessary to evaluate the potential difficulties and risks for making an appropriate treatment plan. The present paper reviews the research progress on the diversities of root canal morphology in mandibular first premolars in recent years, and then makes technologic recommendations based on the morphology diversities.
Humans
;
Dental Pulp Cavity/diagnostic imaging*
;
Bicuspid/anatomy & histology*
;
Mandible
;
Tooth Root/anatomy & histology*
;
Root Canal Therapy
5.Study of dental arch width in patients with idiopathic condylar resorption.
Xiaobo CHEN ; Ping CHEN ; Shanwei MA ; Yuanwei LIANG ; Lin XU
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2023;37(8):652-655
Objective:To investigate the relationship between idiopathic condylar resorption (ICR) and arch width disorder. Methods:Thirty-two patients with ICR and twenty patients without condylar resorption were enrolled according to the same inclusion criteria. They were divided into experimental group and control group. The experimental group was divided into unilateral ICR group and bilateral ICR group according to the affected side of condylar resorption, and then experimental group was divided into subgroups ICR Ⅰ, ICRⅡand ICR Ⅲ according to the degree of condylar resorption. Patients with no condylar resorption were used as a control group. The width of anterior, middle and posterior segments of dental arch on cone beam computed tomography(CBCT) was measured and the two groups of measured values were statistically analyzed. Results:Compared with the control group, the width of maxillary anterior, middle and posterior segments in ICR group was significantly reduced, and the difference was statistically significant(P<0.01). But the width of mandibular segment was not significantly different from that in control group(P>0.05). There was no significant difference in the width of anterior, middle and posterior dental arch between subgroups(P>0.05). Conclusion:Almost all patients with ICR have malocclusion of maxillary and mandibular arch width, but there is no significant correlation between the malocclusion width and the severity of condylar resorption.
Humans
;
Mandibular Condyle/diagnostic imaging*
;
Dental Arch
;
Bone Resorption
;
Mandible
;
Malocclusion
6.Cone-beam CT analysis of vertical control of mandible and changes of temporomandibular joint in adult patients with skeletal class Ⅱ malocclusion with high angle.
Yu WEI ; Guo Rui ZHANG ; Yi Ning LIU ; Wen Yuan Feng CHEN ; Xin Zhu ZHANG ; Bao Cheng CAO
Chinese Journal of Stomatology 2022;57(11):1147-1155
Objective: To investigate the shape and position changes of temporomandibular joint (TMJ) in adult skeletal class Ⅱ malocclusion with high angle patients after vertical mandibular control, and the correlation between vertical mandibular changes and condylar position changes. Methods: Twenty adult skeletal class Ⅱ malocclusion with high angle patients [6 males and 14 females, aged (21.4±2.4) years] who underwent extraction treatment and active vertical control in the Department of Orthodontics, Lanzhou University Stomatological Hospital from October 2017 to November 2020 were selected. Cone-beam CT data of the patient before and after treatment were imported into Invivo Dental 5.0 software for three-dimensional reconstruction and correction, and the vertical index of mandible in reconstructed lateral cephalogram (mandibular plane angle, posterior anterior height ratio, mandibular true rotation angle) were measured. Incisal angle and variables of condyle shape, position and articular fossa shape were measured. Paired t test was performed on the results before and after treatment, and the correlation between mandibular vertical changes and condylar position changes was determined by Pearson correlation coefficient calculation. Results: After treatment, the overbite and overjet were within normal range, and the vertical height of the molars was controlled. Compared with the measurement before treatment, mandibular plane angle and mandibular true rotation angle were decreased by 2.05°±1.22° (t=7.60, P<0.001) and 1.42°±1.92° (t=3.54, P=0.002), respectively. The posterior anterior height ratio was increased by (1.89±3.32)% (t=2.56, P=0.019). After treatment, the mediolateral diameter of condyle, the anteroposterior diameter of condyle, the maximum cross-sectional area of condyle, the height of condyle head, the width of articular fossa, the depth of articular fossa and the articular nodular angle were increased by (0.55±0.76) mm (t=-2.73, P=0.015), (0.27±3.51) mm (t=-3.23, P=0.006), (6.01±7.36) mm2 (t=-2.80, P=0.013), (0.33±0.72) mm (t=-2.14, P=0.046), (0.56±0.93) mm (t=-2.37, P=0.032), 0.33 (0.14, 0.51) mm (Z=-2.76, P=0.006) and 1.50°±2.40° (t=-2.44, P=0.028), respectively. The internal condylar space and the external condylar space were decreased by (0.33±0.49) mm (t=2.31, P=0.035) and (0.20±0.23) mm (t=3.58, P=0.003), respectively. Before orthodontic treatment, 6 patients were with anterior displacement of the condyle, 7 patients with central position of the condyle, and 7 patients with posterior displacement of the condyle. After correction, patients who were with central position of the condyle have not changed much. The posterior displaced condyle in 2 patients and anterior displaced condyle in 3 patients became in central position after treatment. The joint space index was closer to the central position in 3 patients with anterior displacement and 3 patients with posterior displacement. The position of condyle in 1 patient with posterior displacement and 1 patient with anterior displacement remained basically unchanged. There was a significant negative correlation between the change of the posterior-anterior height ratio and the change of the internal condylar space in patients (r=-0.52, P=0.019), and a low correlation with the contral condylar space and the external condylar space(r=-0.48, P=0.031; r=-0.47, P=0.035). Conclusions: Skeletal class Ⅱ malocclusion with high angle adult patients achieved normal overbite and overjet and remodeling of condyle and articular fossa occurred after orthodontic treatmnet and vertical control. There was a certain negative correlation between the change of posterior-anterior height ratio and the change of condylar position.
Adult
;
Female
;
Humans
;
Male
;
Cone-Beam Computed Tomography
;
Malocclusion, Angle Class II/diagnostic imaging*
;
Mandible/diagnostic imaging*
;
Mandibular Condyle/diagnostic imaging*
;
Overbite
;
Temporomandibular Joint/diagnostic imaging*
7.Efficacy of vertical control by using mini-implant anchorage in maxillary posterior buccal area for Angle class Ⅱ extraction patients.
Wei LIANG ; Yao TANG ; Wen Bin HUANG ; Bing HAN ; Jiu Xiang LIN
Journal of Peking University(Health Sciences) 2022;54(2):340-345
OBJECTIVE:
To investigate the efficacy of vertical control by using conventional mini-implant anchorage in maxillary posterior buccal area for Angle class Ⅱ extraction patients.
METHODS:
Twenty-eight Angle class Ⅱ patients [9 males, 19 females, and age (22.6±2.8) years] were selected in this study. All of these patients were treated by using straight wire appliance with 4 premolars extraction and 2 mini-implant anchorage in maxillary posterior buccal area. In this study, the self-control method was used to measure and analyze the lateral radiographs taken before and after orthodontic treatment in each case, the main cephalometric analysis items were related to vertical changes. The digitized lateral radiographs were imported into Dolphin Imaging Software (version 11.5: Dolphin Imaging and Management Solutions, Chatsworth, California, USA), and marked points were traced. Each marked point was confirmed by two orthodontists. The same orthodontist performed measurement on the lateral radiographs over a period of time. All measurement items were required to be measured 3 times, and the average value was taken as the final measurement result.
RESULTS:
Analysis of the cephalometric radiographs showed that, for vertical measurements after treatment, the differences of the following measurements were highly statistically significant (P < 0.001): SN-MP decreased by (1.40±1.45) degrees on average, FMA decreased by (1.58±1.32) degrees on average, the back-to-front height ratio (S-Go/N-Me) decreased by 1.42%±1.43% on average, Y-axis angle decreased by (1.03±0.99) degrees on average, face angle increases by (1.37±1.05) degree on average; The following measurements were statistically significant (P < 0.05): the average depression of the upper molars was (0.68±1.40) mm, and the average depression of the upper anterior teeth was (1.07±1.55) mm. The outcomes indicated that there was a certain degree of upper molar depression after the treatment, which produced a certain degree of counterclockwise rotation of the mandibular plane, resulting in a positive effect on the improvement of the profile.
CONCLUSION
The conventional micro-implant anchorage in maxillary posterior buccal area has a certain vertical control ability, and can give rise to a certain counterclockwise rotation of the mandible, which would improve the profile of Angle Class Ⅱ patients.
Bicuspid
;
Cephalometry/methods*
;
Female
;
Humans
;
Male
;
Malocclusion, Angle Class II/therapy*
;
Mandible
;
Maxilla/diagnostic imaging*
;
Orthodontic Anchorage Procedures
;
Tooth Movement Techniques
;
Vertical Dimension
8.Three-dimensional finite element analysis of traumatic mechanism of mandibular symphyseal fracture combined with bilateral intracapsular condylar fractures.
Wei ZHOU ; Jin Gang AN ; Qi Guo RONG ; Yi ZHANG
Journal of Peking University(Health Sciences) 2021;53(5):983-989
OBJECTIVE:
To analyze the biomechanical mechanism of mandibular symphyseal fracture combined with bilateral intracapsular condylar fractures using finite element analysis (FEA).
METHODS:
Maxillofacial CT scans and temporomandibular joint (TMJ) MRI were performed on a young male with normal mandible, no wisdom teeth and no history of TMJ diseases. The three-dimensional finite element model of mandible was established by Mimics and ANSYS based on the CT and MRI data. The stress distributions of mandible with different angles of traumatic loads applied on the symphyseal region were analyzed. Besides, two models with or without disc, two working conditions in occlusal or non-occlusal status were established, respectively, and the differences of stress distribution between them were compared.
RESULTS:
A three-dimensional finite element model of mandible including TMJ was established successfully with the geometry and mechanical properties to reproduce a normal mandibular structure. Following a blow to the mandibular symphysis with different angles, stress concentration areas were mainly located at condyle, anterior border of ramus and symphyseal region under all conditions. The maximum equivalent stress always appeared on condylar articular surface. As the angle between the external force and the horizontal plane gradually increased from 0° to 60°, the stress on the mandible gradually concentrated to symphysis and bilateral condyle. However, when the angle between the external force and the horizontal plane exceeded 60°, the stress tended to disperse to other parts of the mandible. Compared with the condition without simulating the disc, the stress distribution of articular surface and condylar neck decreased significantly when the disc was present. Compared with non-occlusal status, the stress on the mandible in occlusal status mainly distributed on the occlusal surface, and no stress concentration was found in other parts of the mandible.
CONCLUSION
When the direction of external force is 60° from the horizontal plane, the stress distribution mainly concentrates on symphyseal region and bilateral condylar surface, which explains the occurrence of symphyseal fracture and intracapsular condylar fracture. The stress distribution of condyle (including articular surface and condylar neck) decreases significantly in the presence of arti-cular disc and in stable occlusal status when mandibular symphysis is under traumatic force.
Finite Element Analysis
;
Humans
;
Male
;
Mandible
;
Mandibular Condyle/diagnostic imaging*
;
Mandibular Fractures/diagnostic imaging*
;
Stress, Mechanical
;
Temporomandibular Joint/diagnostic imaging*
;
Temporomandibular Joint Disorders
9.Morphological analysis of alveolar bone of anterior mandible in high-angle skeletal class II and class III malocclusions assessed with cone-beam computed tomography.
Journal of Peking University(Health Sciences) 2018;50(1):98-103
OBJECTIVE:
To evaluate the difference of features of alveolar bone support under lower anterior teeth between high-angle adults with skeletal class II malocclusions and high-angle adults presenting skeletal class III malocclusions by using cone-beam computed tomography (CBCT).
METHODS:
Patients who had taken the images of CBCT were selected from the Peking University School and Hospital of Stomatology between October 2015 and August 2017. The CBCT archives from 62 high-angle adult cases without orthodontic treatment were divided into two groups based on their sagittal jaw relationships: skeletal class II and skeletal class III. vertical bone level (VBL), alveolar bone area (ABA), and the width of alveolar bone were measured respectively at the 2 mm, 4 mm, 6 mm below the cemento-enamel junction (CEJ) level and at the apical level. After that, independent samples t-tests were conducted for statistical comparisons.
RESULTS:
The ABA of the mandibular alveolar bone in the area of lower anterior teeth was significantly thinner in the patients of skeletal class III than those of skeletal class II, especially in terms of the apical ABA, total ABA on the labial and lingual sides and the ABA at 6 mm below CEJ level on the lingual side (P<0.05). The thickness of the alveolar bone of mandibular anterior teeth was significantly thinner in the subjects of skeletal class III than those of skeletal class II, especially regarding the apical level on the labial and lingual side and at the level of 4 mm, 6 mm below CEJ level on the lingual side (P<0.05).
CONCLUSION
The ABA and the thickness of the alveolar bone of mandibular anterior teeth were significantly thinner in the group of skeletal class III adult patients with high-angle when compared with the sample of high-angle skeletal class II adult cases. We recommend orthodontists to be more cautious in treatment of high-angle skeletal class III patients, especially pay attention to control the torque of lower anterior teeth during forward and backward movement, in case that the apical root might be absorbed or fenestration happen in the area of lower anterior teeth.
Adult
;
Alveolar Process/diagnostic imaging*
;
Cephalometry
;
Cone-Beam Computed Tomography
;
Humans
;
Incisor
;
Malocclusion, Angle Class III/diagnostic imaging*
;
Mandible/diagnostic imaging*
10.Exploring a new method for superimposition of pre-treatment and post-treatment mandibular digital dental casts in adults.
Fan Fan DAI ; Yi LIU ; Tian Min XU ; Gui CHEN
Journal of Peking University(Health Sciences) 2018;50(2):271-278
OBJECTIVE:
To explore a cone beam computed tomography (CBCT)-independent method for mandibular digital dental cast superimposition to evaluate three-dimensional (3D) mandibular tooth movement after orthodontic treatment in adults, and to evaluate the accuracy of this method.
METHODS:
Fifteen post-extraction orthodontic treatment adults from the Department of Orthodontics, Peking University School and Hospital of Stomatology were included. All the patients had four first premolars extracted, and were treated with straight wire appliance. The pre- and post-treatment plaster dental casts and craniofacial CBCT scans were obtained. The plaster dental casts were transferred to digital dental casts by 3D laser scanning, and lateral cephalograms were created from the craniofacial CBCT scans by orthogonal projection. The lateral cephalogram-based mandibular digital dental cast superimposition was achieved by sequential maxillary dental cast superimposition registered on the palatal stable region, occlusal transfer, and adjustment of mandibular rotation and translation obtained from lateral cephalogram superimposition. The accuracy of the lateral cephalogram-based mandibular digital dental cast superimposition method was evaluated with the CBCT-based mandibular digital dental cast superimposition method as the standard reference. After mandibular digital dental cast superimposition using both methods, 3D coordinate system was established, and 3D displacements of the lower bilateral first molars, canines and central incisors were measured. Differences between the two superimposition methods in tooth displacement measurements were assessed using the paired t-test with the level of statistical significance set at P<0.05.
RESULTS:
No significant differences were found between the lateral cephalogram-based and CBCT-based mandibular digital dental cast superimposition methods in 3D displacements of the lower first molars, and sagittal and vertical displacements of the canines and central incisors; transverse displacements of the canines and central incisors differed by (0.3±0.5) mm with statistical significance.
CONCLUSION
The lateral cephalogram-based mandibular digital dental cast superimposition method has the similar accuracy as the CBCT-based mandibular digital dental cast superimposition method in 3D evaluation of mandibular orthodontic tooth displacement, except for minor differences for the transverse displacements of anterior teeth. This method is applicable to adult patients with conventional orthodontic treatment records, especially the previous precious orthodontic data in the absence of CBCT scans.
Adult
;
Bicuspid
;
Cephalometry
;
Cone-Beam Computed Tomography
;
Dental Casting Technique
;
Humans
;
Imaging, Three-Dimensional
;
Malocclusion
;
Mandible/diagnostic imaging*
;
Maxilla
;
Models, Dental
;
Molar
;
Palate
;
Tooth Movement Techniques

Result Analysis
Print
Save
E-mail