1.Carthamus tinctorius L.extract ameliorates alcoholic liver disease by modulating PI3K/Akt/FoxO signaling pathway
Wen-Xuan WANG ; Xiang-Lei FU ; Man QI ; Fu-Rong FAN ; Fu-Rong ZHU ; Yuan-Chuang WANG ; Kai-Yue ZHANG ; Min LIU ; Sheng-Hui CHU
Chinese Pharmacological Bulletin 2024;40(6):1137-1145
Aim To investigate the effects of Cartham-us tinctorius L.extract(CTLE)on oxidative stress,lipid metabolism,and apoptosis levels of mice with al-cohol-induced liver injury and its mechanism of action.Methods The mouse model of alcohol-associated liver disease was established by chronic alcohol feeding and acute alcohol gavage.Mice were randomly divided into four groups.During the modeling period,the state changes of mice were observed every day,and their weight was recorded.At the end of modeling,blood and liver tissues were collected from each group of mice.The blood of mice was analyzed biochemically,and HE staining and Oil Red O staining were used to evaluate further the degree of pathological damage in the liver of mice.Quantitative real-time PCR(qPCR)and Western blot were applied to detect the mRNA and protein expression levels of p-PI3K,PI3K,p-Akt,Akt,p-mTOR,mTOR,p-FoxO1,FoxO1,p-FoxO3a,FoxO3a,p-FoxO4,FoxO4,BCL and BAX factors.Results Compared to the model group,the CTLE administration group showed improved hepatic patho-logical injury and reduced lipid deposition.The bio-chemical indexes in serum and liver,such as ALT,AST,TG,TC,and MDA levels were reduced,while GSH and SOD levels increased.Regulating the PI3K/Akt/FoxO pathway resulted in increased production of SOD,which reduced damage and apoptosis caused by reactive oxygen species(ROS).Conclusions CTLE can exert anti-oxidative stress and anti-apoptotic effects through the PI3K/Akt/FoxO pathway and attenuates alcoholic liver injury in mice,providing new ideas for the treatment of alcoholic liver disease and the develop-ment of related drugs.
2.Design of portable collection device for exhaled breath condensate
An XIANG ; Lei ZHOU ; Qi-Feng JI ; Yuan-Zhe LI ; Qin WANG ; Shi-Man ZHU ; Jie PENG ; Xiao-Ying LEI ; Wei-Na LI ; Li WANG ; Yan-Hai GUO ; Zi-Fan LU
Chinese Medical Equipment Journal 2024;45(8):32-37
Objective To develop a portable collection device of human exhaled breath condensate(EBC)based on natural breathing to meet the needs for rapid screening of human respiratory tract(especially lower respiratory tract)infections.Methods The device consisted of a refrigeration unit,a heat dissipation unit and a condensation unit.The refrigeration unit adopted a TES1-7102 thermoelectric Peltier cooler semiconductor as the refrigeration element;the heat dissipation unit was composed of a high thermal conductivity aluminum heat sink and a high-speed brushless cooling fan;the condensation unit was made up of a cold guide plate and a condenser,in which the cold guide plate was made of thin sheet of aluminum alloy,and the condenser was prepared by 3D printing technology and made of hydrophobic polylactic acid,with primary and secondary 2-stage guide grooves and an ultra-thin condensing surface.The performance of the device was verified in terms of cooling,thermal conductivity,condensation and human EBC collection and content analysis.Results Performance analysis showed that after refrigeration began the temperature difference between the condenser surface and the exhaled gas met the requirements of the condenser,and no obvious thermal resistance was found on the condensing surface so that large droplets could be formed rapidly and then be collected after the gas-liquid phase change of the exhaled gas on the condensing surface.Human EBC collection and content analysis indicated the device realized home self-collection of EBCs from people of all ages,and the concentrations of interleukins,C-reactive protein and other inflammation-related indexes and the pH value of the collected EBC samples were all correlated with respiratory infections in the subjects.Conclusion The device developed with easy operation avoids the discomfort of blowing collection and the risk of saliva contamination,and is worthy promoting for rapid diagnosis and dynamic monitoring of respiratory tract infection and other related diseases.[Chinese Medical Equipment Journal,2024,45(8):32-37]
3.Laboratory proficiency testing for creepage distance and electrical clearance test of medical electrical equipment based on GB 9706.1-2020
Xiao-Ming GAO ; Song-Yan XU ; Xiao-Peng HAN ; Zhen-Shi LIANG ; Man ZHANG ; Ting-Ru GUAN ; Hui-Ru WANG ; Yuan-Yuan QU ; Xin-Hua XIANG
Chinese Medical Equipment Journal 2024;45(10):54-59
Objective To clarify the understanding of types of laboratories and manufacturers for GB 9706.1-2020 Medical electrical equipment-Part 1:General requirements for basic safety and essential performance by laboratory proficiency testing for creepage distance and electrical clearance test.Methods An operation guide was formed according to the testing program in GB 9706.1-2020,and the homogeneity and stability of the samples were evaluated according to CNAS-GL003:2018 Guidance on Evaluating the Homogenneity and Stability of Samples Used for Proficiency Testing.Robust statistic methods were used to assess the quantitative parameters of the test results of the participating laboratories according to the requirements in GB/T 28043-2019 Statistical methods for use in proficiency testing by interlaboratory comparison;the results reported by the expert laboratories were used as the specified values of the qualitative parameters.SPSS 25.0 statistical software was used for data analysis.Results All the results of the crreepage distance and electrical clearance tests met the requirements for homogeneity and stability.Of the 46 laboratories involved in,37 ones did have comprehensive satisfactory determinations while the remained 9 ones not.Conclusion Some laboratories don't behave well in understanding the standard,which have to be reformed accordingly to enhance their proficiencies.[Chinese Medical Equipment Journal,2024,45(10):54-59]
4. Preparation of tripterygium glycoside nanoparticles and therapeutic effect on arthritis rats
Zhi-Rong WANG ; Man LI ; Zhen-Qiang ZHANG ; Min YAN ; Xiang-Xiang WU ; Hua-Hui ZENG
Chinese Pharmacological Bulletin 2024;40(1):125-132
Aim To prepare tripterygium glycoside nanoparticles and probe into their therapeutic effect on collagen-induced arthritis ( CIA) rats. Methods Tripterygium glycosides polyglycoside nanoparticles were prepared by thin film dispersion method and their quality was assessed. The CIA model was established and drug intervention performed. The body weight, toe swelling degree and arthritis index were measured. The pathological changes of the organs, knee and ankle synovium were observed. The serum levels of kidney function and inflammatory cytokine expression were detected in rats. Results The prepared tripterygium wil-fordii polyglycoside nanoparticles were round particles with uniform distribution and stable properties under electron microscope. Compared with the model group, the swelling of the left and right toes of medication group significantly decreased (P < 0. 01), and the ar-thritis index markedly decreased ( P < 0. 01). Among them, the efficacy of the TG-NPs group was better than that of the TG group. Compared with the normal group, the indexes of heart, spleen, kidney and testis all significantly decreased (P <0. 05, P<0.01). TG-NPs group had a significantly reduced pathological ankle-joint injury in knee cartilage and increased apoptotic synovial cells. Compared with the model group, the serum levels of ALT and BUN and CRE in TG-NPs group were significantly lower (P < 0. 05 ), and IL-1β, TNF-α and IL-6 levels decreased significantly (P <0. 05). Conclusions TG-NPs have good therapeutic effect on CIA through induction of synovial cell apoptosis and decrease of the expression of inflammatory cytokines. By intravenous injection of blood circula-tion, slow and controlled release of drugs can be achieved, the first pass effect caused by oral drug can be avoided, the viscera toxicity can be reduced, which provides an experimental basis for the development of new nanoagents for the treatment of rheumatoid arthritis.
5.Research on The Interaction of Exercise-mediated Cardiac Metabolism and Circadian Rhythm
Xiang-Hao KONG ; Man-Da WANG ; Liang YU
Progress in Biochemistry and Biophysics 2024;51(9):2133-2143
The relationship between exercise and cardiac health has always been a hotspot in the fields of medicine and exercise science. Recently, with the in-depth study of the biological clock, people have gradually realized the close relationship between cardiac metabolic activity and circadian rhythms. The mammalian circadian system includes the central circadian clock and peripheral circadian clocks, the central circadian clock is the main clock system responsible for regulating the circadian rhythms in organisms, located in the suprachiasmatic nucleus (SCN) of the hypothalamus in mammals, which receives light signals from the retina and translates them into neural signals to regulate peripheral circadian clocks distributed throughout the body. Peripheral circadian clocks exist in various tissues and organs of organisms, coordinating with the central circadian clock to maintain the circadian rhythms of the organism. A series of clock genes regulate downstream clock-controlled genes through the transcriptional-translational feedback loop (TTFL), profoundly affecting the physiological activities of the heart, including cardiac contraction, relaxation, and metabolic processes. Factors such as sleep disorders, shift work, light pollution, and excessive use of electronic devices in modern lifestyles have led to widespread disruption of circadian rhythms, which are significantly correlated with increased cardiovascular disease incidence and mortality. Studies have found that dysregulation of the cardiac circadian clock can not only lead to myocardial lipid degeneration and weakened metabolic rhythms but also decrease myocardial glucose utilization, thereby increasing the risk of adverse cardiac events. Exercise, as a key zeitgeber, has been widely demonstrated to regulate the circadian clocks of peripheral organs such as skeletal muscle, kidneys, and liver. Additionally, exercise, as an important means to improve cardiovascular function, can effectively enhance cardiac metabolic function and resistance to stress stimuli, playing a significant role in promoting heart health. However, the specific mechanisms by which exercise affects the cardiac circadian clock and its related genes are currently unclear. Therefore, this review will focus on the relationship between the cardiac circadian clock and cardiac metabolic activity, summarize previous research to review the possible mechanisms of exercise-mediated regulation of cardiac metabolic activity on the cardiac circadian clock. The cardiac circadian clock plays an important role in maintaining cardiac metabolic activity and physiological functions. The loss of cardiac circadian clock genes Bmal1 and Clock can significantly reduce cardiac fatty acid and glucose utilization rates, increase myocardial lipotoxicity, weaken the circadian rhythm of myocardial triglyceride metabolism, and lead to abnormalities in the circadian clocks of other peripheral organs. Exercise, as a zeitgeber, can independently regulate the cardiac circadian clock apart from the central circadian clock. Additionally, exercise, as an important means to improve cardiovascular function, may regulate cardiac metabolic activity and the transcription of clock genes by activating the hypothalamic-pituitary-adrenal axis (HPA) and sympathetic-adrenal-medullary axis (SAM) and regulating energy metabolism, thereby maintaining the stability of the cardiac circadian clock and promoting heart health. Future research on the molecular mechanisms of exercise regulation of the cardiac circadian clock will help clarify the role and impact of clock genes in cardiac metabolism and physiological activities, providing new preventive and treatment strategies for shift workers, night owls, and patients with cardiovascular diseases. Therefore, future research should focus on (1) the mechanisms by which exercise regulates cardiac metabolic activity and the circadian clock, (2) the effects and mechanisms of exercise on the disruption of cardiac circadian clock induced by light-dark cycle disturbances, and (3) the effects of exercise on the metabolic activity and circadian rhythms of other peripheral organs regulated by the cardiac circadian clock.
6.One new glycoside naphthopyranone from the Yiling cave-derived Metarhizium anisopliae NHC-M3-2
Li-man ZHOU ; Yi HAO ; Ju-xiang MENG ; Fang-fang QIN ; Qing-hua QIN ; Cong WANG ; Fan-dong KONG
Acta Pharmaceutica Sinica 2023;58(10):3076-3081
Seven compounds were isolated from fermentation extract of cave-derived
7.Preparation of CD33 targeted bispecific- and trispecific-T cell engagers and their cytotoxicity on leukemia cells.
Ting ZHANG ; Man Ling CHEN ; Xiao Yu LIU ; Hui Zhen HE ; Ying Xi XU ; Zheng TIAN ; Hai Yan XING ; Ke Jing TANG ; Qing RAO ; Min WANG ; Jian Xiang WANG
Chinese Journal of Hematology 2022;43(5):376-382
Objective: To investigate the effect of CD33-targeted bi-specific and tri-specific T-cell engagers on T-cell proliferation and explore their cytotoxicity on leukemia cells. Methods: The CD33-targeted bi-specific T-cell engager (CD33-BiTE) and tri-specific T-cell engager (CD33-TriTE) expression vectors were successfully constructed and expressed through a eukaryotic cell expression system. CD33-BiTE and CD33-TriTE were purified by affinity chromatography. The effects of CD33-BiTE and CD33-TriTE on T cells were analyzed through in vitro experiments. Results: ① CD33-BiTE and CD33-TriTE were successfully constructed and purified and could compete with flow cytometry antibodies for binding to the target cells. ② After 12 days of co-culture with CD33-BiTE and CD33-TriTE, the number of human T cells were expanded to 33.89±19.46 and 81.56±23.62 folds, respectively. CD33-TriTE induced a stronger proliferation of T cells than CD33-BiTE (P<0.05) . ③ Both CD33-BiTE and CD33-TriTE induced specific dose-dependent cytotoxicity on CD33(+) leukemia cells. ④ Compared to CD33-TriTE, leukemia cells were prone to express PD-L1 when co-cultured with T cells and CD33-BiTE. CD33-TriTE induced powerful cytotoxicity on leukemia cells with high PD-L1 expression. Conclusion: CD33-BiTE and CD33-TriTE expression vectors were constructed, and fusion proteins were expressed in eukaryotic cells. Our results support the proliferative and activating effects of BiTE and TriTE on T cells. Compared to that of CD33-BiTE, CD33-TriTE induced a stronger proliferative effect on T cells and a more powerful cytotoxicity on leukemia cells with high PD-L1 expression.
B7-H1 Antigen/pharmacology*
;
Humans
;
Leukemia, Myeloid, Acute/metabolism*
;
Sialic Acid Binding Ig-like Lectin 3/pharmacology*
;
T-Lymphocytes
8.Effect of Etoposide on Elimination of Chronic Myeloid Leukemia Stem Cells by Imatinib in Vivo.
Xiang-Jie CHEN ; Qing-Qing WU ; Man-Yu LIU ; Wei-Zhang WANG
Journal of Experimental Hematology 2021;29(2):395-402
OBJECTIVE:
To investigate the effect of etoposide (ETO) on elimination of chronic myeloid leukemia (CML) stem cells by imatinib mesylate(IM) in vivo.
METHODS:
SCL-tTA/BCR-ABL mice were used as CML animal model. Flow cytometry was used to assess the effect of ETO alone or in combination with IM on the number of leukemia stem cell (LSC) in bone marrow and spleen, and peripheral blood neutrophils in CML mice and normal control FVB mice.
RESULTS:
The results showed that in CML mice, the number and proportion of LSC in bone marrow and the proportion of neutrophils in peripheral blood decreased significantly after ETO and IM combined treatment, and the degree of decrease was more significant than that of both alone. While in wild type FVB mice, the combination of ETO and IM showed no significant effect on the number and proportion of LSK cells in bone marrow and the proportion of neutrophils in spleen.
CONCLUSION
ETO can selectively enhance elimination of CML LSC by IM in vivo.
Animals
;
Drug Resistance, Neoplasm
;
Etoposide
;
Fusion Proteins, bcr-abl
;
Imatinib Mesylate
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy*
;
Mice
;
Stem Cells
9.Association between Baseline SBP/DBP and All-Cause Mortality in Residents of Shanxi, China: A Population-based Cohort Study from 2002 to 2015.
Zhuo Qun WANG ; Yi ZHAI ; Man LI ; Xiu Feng YANG ; Jian ZHANG ; Ze Ping REN ; Mei ZHANG ; Peng Kun SONG ; Yan Fang ZHAO ; Sheng Quan MI ; Lu ZHANG ; Mao Xiang YANG ; Wen Hua ZHAO
Biomedical and Environmental Sciences 2021;34(1):1-8
Objective:
To investigate the association between blood pressure and all-cause mortality in Shanxi, China.
Methods:
The '2002 China Nutrition and Health Survey' baseline data in Shanxi province was used. A retrospective investigation was performed in 2015. The effects of SBP and DBP on the all-cause mortality were analyzed using the Cox regression model. The hazard ratio (
Results:
The follow-up rate was 76.52% over 13 years, while the cumulative mortality rate for all participants was 917.12/100,000 person-years. The mortality rose with an increasing SBP (
Conclusion
Adults with SBP > 160 mmHg and DBP > 100 mmHg had a higher mortality risk. Sex and age difference was noted in both DBP and mortality risk.
Adolescent
;
Adult
;
Aged
;
Blood Pressure
;
China
;
Cohort Studies
;
Female
;
Health Surveys
;
Humans
;
Hypertension/mortality*
;
Male
;
Middle Aged
;
Mortality/trends*
;
Proportional Hazards Models
;
Young Adult
10.Major progress in tumor accumulation and penetration of nanomedicine
Man-yu GAO ; Jing-xin FU ; Xiang-tao WANG
Acta Pharmaceutica Sinica 2021;56(1):138-145
Nanomedicine has great potential in cancer therapy, but the complex tumor microenvironment greatly prevents nanomedicine from being effectively delivered into tumor

Result Analysis
Print
Save
E-mail