1.Research progress on rodent models of secondary lymphedema.
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(7):919-924
OBJECTIVE:
To summarize the research progress of rodent models of secondary lymphedema (SL) and provide a reference for selecting appropriate animal models in SL research.
METHODS:
Recent literature on rodent SL models at home and abroad was comprehensively analyzed, summarizing model categories, development techniques, strengths, and weaknesses.
RESULTS:
Current research primarily utilizes rats and mice to establish SL models. The main model types include hind limb, forelimb, tail, and head/neck models. The hind limb model is the most frequently employed, typically requiring surgery combined with irradiation to induce stable chronic edema. Forelimb models primarily simulate upper limb lymphedema, but exhibit relatively rapid edema resolution. Tail models offer operational simplicity and are predominantly used for studying acute edema mechanisms and interventions; however, they demonstrate poor clinical relevance. Emerging head/neck models provide a valuable tool for investigating head and neck cancer-associated lymphedema. These models exhibit variations in lymphedema duration, degree of fibrosis, and edema incidences.
CONCLUSION
Existing models still fall short in faithfully replicating the chronicity, fibrosis, fat deposition, and complex microenvironment characteristic of human chronic lymphedema. Future research must integrate multidisciplinary approaches, optimize model construction strategies, and explore novel modeling approaches to more accurately mimic the human disease and advance SL prevention and treatment research.
Lymphedema/pathology*
;
Animals
;
Disease Models, Animal
;
Rats
;
Mice
;
Humans
;
Head and Neck Neoplasms/complications*
;
Rodentia
2.Electroacupuncture Promotes Functional Recovery after Facial Nerve Injury in Rats by Regulating Autophagy via GDNF and PI3K/mTOR Signaling Pathway.
Jun-Peng YAO ; Xiu-Mei FENG ; Lu WANG ; Yan-Qiu LI ; Zi-Yue ZHU ; Xiang-Yun YAN ; Yu-Qing YANG ; Ying LI ; Wei ZHANG
Chinese journal of integrative medicine 2024;30(3):251-259
OBJECTIVE:
To explore the mechanism of electroacupuncture (EA) in promoting recovery of the facial function with the involvement of autophagy, glial cell line-derived neurotrophic factor (GDNF), and phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway.
METHODS:
Seventy-two male Sprague-Dawley rats were randomly allocated into the control, sham-operated, facial nerve injury (FNI), EA, EA+3-methyladenine (3-MA), and EA+GDNF antagonist groups using a random number table, with 12 rats in each group. An FNI rat model was established with facial nerve crushing method. EA intervention was conducted at Dicang (ST 4), Jiache (ST 6), Yifeng (SJ 17), and Hegu (LI 4) acupoints for 2 weeks. The Simone's 10-Point Scale was utilized to monitor the recovery of facial function. The histopathological evaluation of facial nerves was performed using hematoxylin-eosin (HE) staining. The levels of Beclin-1, light chain 3 (LC3), and P62 were detected by immunohistochemistry (IHC), immunofluorescence, and reverse transcription-polymerase chain reaction, respectively. Additionally, IHC was also used to detect the levels of GDNF, Rai, PI3K, and mTOR.
RESULTS:
The facial functional scores were significantly increased in the EA group than the FNI group (P<0.05 or P<0.01). HE staining showed nerve axons and myelin sheaths, which were destroyed immediately after the injury, were recovered with EA treatment. The expressions of Beclin-1 and LC3 were significantly elevated and the expression of P62 was markedly reduced in FNI rats (P<0.01); however, EA treatment reversed these abnormal changes (P<0.01). Meanwhile, EA stimulation significantly increased the levels of GDNF, Rai, PI3K, and mTOR (P<0.01). After exogenous administration with autophagy inhibitor 3-MA or GDNF antagonist, the repair effect of EA on facial function was attenuated (P<0.05 or P<0.01).
CONCLUSIONS
EA could promote the recovery of facial function and repair the facial nerve damages in a rat model of FNI. EA may exert this neuroreparative effect through mediating the release of GDNF, activating the PI3K/mTOR signaling pathway, and further regulating the autophagy of facial nerves.
Rats
;
Male
;
Animals
;
Rats, Sprague-Dawley
;
Electroacupuncture
;
Phosphatidylinositol 3-Kinase/metabolism*
;
Facial Nerve Injuries/therapy*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Beclin-1
;
Glial Cell Line-Derived Neurotrophic Factor
;
Signal Transduction
;
TOR Serine-Threonine Kinases/metabolism*
;
Autophagy
;
Mammals/metabolism*
3.Temporal-spatial Generation of Astrocytes in the Developing Diencephalon.
Wentong HONG ; Pifang GONG ; Xinjie PAN ; Zhonggan REN ; Yitong LIU ; Guibo QI ; Jun-Liszt LI ; Wenzhi SUN ; Woo-Ping GE ; Chun-Li ZHANG ; Shumin DUAN ; Song QIN
Neuroscience Bulletin 2024;40(1):1-16
Astrocytes are the largest glial population in the mammalian brain. However, we have a minimal understanding of astrocyte development, especially fate specification in different regions of the brain. Through lineage tracing of the progenitors of the third ventricle (3V) wall via in-utero electroporation in the embryonic mouse brain, we show the fate specification and migration pattern of astrocytes derived from radial glia along the 3V wall. Unexpectedly, radial glia located in different regions along the 3V wall of the diencephalon produce distinct cell types: radial glia in the upper region produce astrocytes and those in the lower region produce neurons in the diencephalon. With genetic fate mapping analysis, we reveal that the first population of astrocytes appears along the zona incerta in the diencephalon. Astrogenesis occurs at an early time point in the dorsal region relative to that in the ventral region of the developing diencephalon. With transcriptomic analysis of the region-specific 3V wall and lateral ventricle (LV) wall, we identified cohorts of differentially-expressed genes in the dorsal 3V wall compared to the ventral 3V wall and LV wall that may regulate astrogenesis in the dorsal diencephalon. Together, these results demonstrate that the generation of astrocytes shows a spatiotemporal pattern in the developing mouse diencephalon.
Mice
;
Animals
;
Astrocytes
;
Neuroglia/physiology*
;
Diencephalon
;
Brain
;
Neurons
;
Mammals
4.BMP7 expression in mammalian cortical radial glial cells increases the length of the neurogenic period.
Zhenmeiyu LI ; Guoping LIU ; Lin YANG ; Mengge SUN ; Zhuangzhi ZHANG ; Zhejun XU ; Yanjing GAO ; Xin JIANG ; Zihao SU ; Xiaosu LI ; Zhengang YANG
Protein & Cell 2024;15(1):21-35
The seat of human intelligence is the human cerebral cortex, which is responsible for our exceptional cognitive abilities. Identifying principles that lead to the development of the large-sized human cerebral cortex will shed light on what makes the human brain and species so special. The remarkable increase in the number of human cortical pyramidal neurons and the size of the human cerebral cortex is mainly because human cortical radial glial cells, primary neural stem cells in the cortex, generate cortical pyramidal neurons for more than 130 days, whereas the same process takes only about 7 days in mice. The molecular mechanisms underlying this difference are largely unknown. Here, we found that bone morphogenic protein 7 (BMP7) is expressed by increasing the number of cortical radial glial cells during mammalian evolution (mouse, ferret, monkey, and human). BMP7 expression in cortical radial glial cells promotes neurogenesis, inhibits gliogenesis, and thereby increases the length of the neurogenic period, whereas Sonic Hedgehog (SHH) signaling promotes cortical gliogenesis. We demonstrate that BMP7 signaling and SHH signaling mutually inhibit each other through regulation of GLI3 repressor formation. We propose that BMP7 drives the evolutionary expansion of the mammalian cortex by increasing the length of the neurogenic period.
Animals
;
Mice
;
Humans
;
Ependymoglial Cells/metabolism*
;
Hedgehog Proteins/metabolism*
;
Ferrets/metabolism*
;
Cerebral Cortex
;
Neurogenesis
;
Mammals/metabolism*
;
Neuroglia/metabolism*
;
Bone Morphogenetic Protein 7/metabolism*
5.Research progress of m6A methylation in prostate cancer.
Asian Journal of Andrology 2023;25(2):166-170
N6-methyladenosine (m6A) is a ubiquitous RNA modification in mammals. This modification is "written" by methyltransferases and then "read" by m6A-binding proteins, followed by a series of regulation, such as alternative splicing, translation, RNA stability, and RNA translocation. At last, the modification is "erased" by demethylases. m6A modification is essential for normal physiological processes in mammals and is also a very important epigenetic modification in the development of cancer. In recent years, cancer-related m6A regulation has been widely studied, and various mechanisms of m6A regulation in cancer have also been recognized. In this review, we summarize the changes of m6A modification in prostate cancer and discuss the effect of m6A regulation on prostate cancer progression, aiming to profile the potential relevance between m6A regulation and prostate cancer development. Intensive studies on m6A regulation in prostate cancer may uncover the potential role of m6A methylation in the cancer diagnosis and cancer therapy.
Animals
;
Male
;
Humans
;
Methylation
;
Adenosine/metabolism*
;
RNA/metabolism*
;
Methyltransferases/metabolism*
;
Prostatic Neoplasms
;
Mammals
6.Spatiotemporal Dynamics of the Molecular Expression Pattern and Intercellular Interactions in the Glial Scar Response to Spinal Cord Injury.
Leilei GONG ; Yun GU ; Xiaoxiao HAN ; Chengcheng LUAN ; Chang LIU ; Xinghui WANG ; Yufeng SUN ; Mengru ZHENG ; Mengya FANG ; Shuhai YANG ; Lai XU ; Hualin SUN ; Bin YU ; Xiaosong GU ; Songlin ZHOU
Neuroscience Bulletin 2023;39(2):213-244
Nerve regeneration in adult mammalian spinal cord is poor because of the lack of intrinsic regeneration of neurons and extrinsic factors - the glial scar is triggered by injury and inhibits or promotes regeneration. Recent technological advances in spatial transcriptomics (ST) provide a unique opportunity to decipher most genes systematically throughout scar formation, which remains poorly understood. Here, we first constructed the tissue-wide gene expression patterns of mouse spinal cords over the course of scar formation using ST after spinal cord injury from 32 samples. Locally, we profiled gene expression gradients from the leading edge to the core of the scar areas to further understand the scar microenvironment, such as neurotransmitter disorders, activation of the pro-inflammatory response, neurotoxic saturated lipids, angiogenesis, obstructed axon extension, and extracellular structure re-organization. In addition, we described 21 cell transcriptional states during scar formation and delineated the origins, functional diversity, and possible trajectories of subpopulations of fibroblasts, glia, and immune cells. Specifically, we found some regulators in special cell types, such as Thbs1 and Col1a2 in macrophages, CD36 and Postn in fibroblasts, Plxnb2 and Nxpe3 in microglia, Clu in astrocytes, and CD74 in oligodendrocytes. Furthermore, salvianolic acid B, a blood-brain barrier permeation and CD36 inhibitor, was administered after surgery and found to remedy fibrosis. Subsequently, we described the extent of the scar boundary and profiled the bidirectional ligand-receptor interactions at the neighboring cluster boundary, contributing to maintain scar architecture during gliosis and fibrosis, and found that GPR37L1_PSAP, and GPR37_PSAP were the most significant gene-pairs among microglia, fibroblasts, and astrocytes. Last, we quantified the fraction of scar-resident cells and proposed four possible phases of scar formation: macrophage infiltration, proliferation and differentiation of scar-resident cells, scar emergence, and scar stationary. Together, these profiles delineated the spatial heterogeneity of the scar, confirmed the previous concepts about scar architecture, provided some new clues for scar formation, and served as a valuable resource for the treatment of central nervous system injury.
Mice
;
Animals
;
Gliosis/pathology*
;
Cicatrix/pathology*
;
Spinal Cord Injuries
;
Astrocytes/metabolism*
;
Spinal Cord/pathology*
;
Fibrosis
;
Mammals
;
Receptors, G-Protein-Coupled
7.Roles of NG2 Glia in Cerebral Small Vessel Disease.
Yixi HE ; Zhenghao LI ; Xiaoyu SHI ; Jing DING ; Xin WANG
Neuroscience Bulletin 2023;39(3):519-530
Cerebral small vessel disease (CSVD) is one of the most prevalent pathologic processes affecting 5% of people over 50 years of age and contributing to 45% of dementia cases. Increasing evidence has demonstrated the pathological roles of chronic hypoperfusion, impaired cerebral vascular reactivity, and leakage of the blood-brain barrier in CSVD. However, the pathogenesis of CSVD remains elusive thus far, and no radical treatment has been developed. NG2 glia, also known as oligodendrocyte precursor cells, are the fourth type of glial cell in addition to astrocytes, microglia, and oligodendrocytes in the mammalian central nervous system. Many novel functions for NG2 glia in physiological and pathological states have recently been revealed. In this review, we discuss the role of NG2 glia in CSVD and the underlying mechanisms.
Animals
;
Neuroglia/metabolism*
;
Central Nervous System/metabolism*
;
Astrocytes/metabolism*
;
Oligodendroglia/metabolism*
;
Cerebral Small Vessel Diseases/metabolism*
;
Antigens/metabolism*
;
Mammals/metabolism*
8.The Structure and Function of Glial Networks: Beyond the Neuronal Connections.
Hai-Rong PENG ; Yu-Kai ZHANG ; Jia-Wei ZHOU
Neuroscience Bulletin 2023;39(3):531-540
Glial cells, consisting of astrocytes, oligodendrocyte lineage cells, and microglia, account for >50% of the total number of cells in the mammalian brain. They play key roles in the modulation of various brain activities under physiological and pathological conditions. Although the typical morphological features and characteristic functions of these cells are well described, the organization of interconnections of the different glial cell populations and their impact on the healthy and diseased brain is not completely understood. Understanding these processes remains a profound challenge. Accumulating evidence suggests that glial cells can form highly complex interconnections with each other. The astroglial network has been well described. Oligodendrocytes and microglia may also contribute to the formation of glial networks under various circumstances. In this review, we discuss the structure and function of glial networks and their pathological relevance to central nervous system diseases. We also highlight opportunities for future research on the glial connectome.
Animals
;
Neuroglia/physiology*
;
Neurons/physiology*
;
Astrocytes
;
Microglia/physiology*
;
Oligodendroglia
;
Mammals
9.Tinker, tailor, soldier, cell: the role of C-type lectins in the defense and promotion of disease.
James N ARNOLD ; Daniel A MITCHELL
Protein & Cell 2023;14(1):4-16
C-type lectins (CTLs) represent a large family of soluble and membrane-bound proteins which bind calcium dependently via carbohydrate recognition domains (CRDs) to glycan residues presented on the surface of a variety of pathogens. The deconvolution of a cell's glycan code by CTLs underpins several important physiological processes in mammals such as pathogen neutralization and opsonization, leukocyte trafficking, and the inflammatory response. However, as our knowledge of CTLs has developed it has become apparent that the role of this innate immune family of proteins can be double-edged, where some pathogens have developed approaches to subvert and exploit CTL interactions to promote infection and sustain the pathological state. Equally, CTL interactions with host glycoproteins can contribute to inflammatory diseases such as arthritis and cancer whereby, in certain contexts, they exacerbate inflammation and drive malignant progression. This review discusses the 'dual agent' roles of some of the major mammalian CTLs in both resolving and promoting infection, inflammation and inflammatory disease and highlights opportunities and emerging approaches for their therapeutic modulation.
Animals
;
Humans
;
Inflammation/metabolism*
;
Lectins, C-Type/metabolism*
;
Mammals/metabolism*
;
Membrane Proteins
;
Polysaccharides/metabolism*
10.In vitro and in vivo anticancer potential and molecular targets of the new colchicine analog IIIM-067.
Sumera MALIK ; Mubashir J MINTOO ; Chilakala Nagarjuna REDDY ; Rajesh KUMAR ; Pankul KOTWAL ; Sandip B BHARATE ; Utpal NANDI ; Dilip M MONDHE ; Sanket K SHUKLA
Journal of Integrative Medicine 2023;21(1):62-76
OBJECTIVE:
The current study evaluated various new colchicine analogs for their anticancer activity and to study the primary mechanism of apoptosis and in vivo antitumor activity of the analogs with selective anticancer properties and minimal toxicity to normal cells.
METHODS:
Sulforhodamine B (SRB) assay was used to screen various colchicine analogs for their in vitro cytotoxicity. The effect of N-[(7S)-1,2,3-trimethoxy-9-oxo-10-(pyrrolidine-1-yl)5,6,7,9-tetrahydrobenzo[a] heptalene-7-yl] acetamide (IIIM-067) on clonogenicity, apoptotic induction, and invasiveness of A549 cells was determined using a clonogenic assay, scratch assay, and staining with 4',6-diamidino-2-phenylindole (DAPI) and annexin V/propidium iodide. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) levels were observed using fluorescence microscopy. Western blot analysis was used to quantify expression of proteins involved in apoptosis, cell cycle, and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling. Pharmacokinetic and in vivo efficacy studies against Ehrlich ascites carcinoma (EAC) and Ehrlich solid tumor models were conducted using Swiss albino mice.
RESULTS:
IIIM-067 showed potent cytotoxicity and better selectivity than all other colchicine analogs screened in this study. The selective activity of IIIM-067 toward A549 cells was higher among other cancer cell lines, with a selectivity index (SI) value of 2.28. IIIM-067 demonstrated concentration- and time-dependent cytotoxicity against A549 cells with half-maximal inhibitory concentration values of 0.207, 0.150 and 0.106 μmol/L at 24, 48 and 72 h, respectively. It also had reduced toxicity to normal cells (SI > 1) than the parent compound colchicine (SI = 1). IIIM-067 reduced the clonogenic ability of A549 cells in a dose-dependent manner. IIIM-067 enhanced ROS production from 24.6% at 0.05 μmol/L to 82.1% at 0.4 μmol/L and substantially decreased the MMP (100% in control to 5.6% at 0.4 μmol/L). The annexin V-FITC assay demonstrated 78% apoptosis at 0.4 μmol/L. IIIM-067 significantly (P < 0.5) induced the expression of various intrinsic apoptotic pathway proteins, and it differentially regulated the PI3K/AKT/mTOR signaling pathway. Furthermore, IIIM-067 exhibited remarkable in vivo anticancer activity against the murine EAC model, with tumor growth inhibition (TGI) of 67.0% at a dose of 6 mg/kg (i.p.) and a reduced mortality compared to colchicine. IIIM-067 also effectively inhibited the tumor growth in the murine solid tumor model with TGI rates of 48.10%, 55.68% and 44.00% at doses of 5 mg/kg (i.p.), 6 mg/kg (i.p.) and 7 mg/kg (p.o.), respectively.
CONCLUSION
IIIM-067 exhibited significant anticancer activity with reduced toxicity both in vitro and in vivo and is a promising anticancer candidate. However, further studies are required in clinical settings to fully understand its potential.
Animals
;
Mice
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Antineoplastic Agents, Phytogenic/pharmacology*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Reactive Oxygen Species/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Colchicine/pharmacology*
;
Apoptosis
;
Cell Line, Tumor
;
Cell Proliferation
;
Mammals/metabolism*

Result Analysis
Print
Save
E-mail