1.Electroacupuncture Promotes Functional Recovery after Facial Nerve Injury in Rats by Regulating Autophagy via GDNF and PI3K/mTOR Signaling Pathway.
Jun-Peng YAO ; Xiu-Mei FENG ; Lu WANG ; Yan-Qiu LI ; Zi-Yue ZHU ; Xiang-Yun YAN ; Yu-Qing YANG ; Ying LI ; Wei ZHANG
Chinese journal of integrative medicine 2024;30(3):251-259
OBJECTIVE:
To explore the mechanism of electroacupuncture (EA) in promoting recovery of the facial function with the involvement of autophagy, glial cell line-derived neurotrophic factor (GDNF), and phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway.
METHODS:
Seventy-two male Sprague-Dawley rats were randomly allocated into the control, sham-operated, facial nerve injury (FNI), EA, EA+3-methyladenine (3-MA), and EA+GDNF antagonist groups using a random number table, with 12 rats in each group. An FNI rat model was established with facial nerve crushing method. EA intervention was conducted at Dicang (ST 4), Jiache (ST 6), Yifeng (SJ 17), and Hegu (LI 4) acupoints for 2 weeks. The Simone's 10-Point Scale was utilized to monitor the recovery of facial function. The histopathological evaluation of facial nerves was performed using hematoxylin-eosin (HE) staining. The levels of Beclin-1, light chain 3 (LC3), and P62 were detected by immunohistochemistry (IHC), immunofluorescence, and reverse transcription-polymerase chain reaction, respectively. Additionally, IHC was also used to detect the levels of GDNF, Rai, PI3K, and mTOR.
RESULTS:
The facial functional scores were significantly increased in the EA group than the FNI group (P<0.05 or P<0.01). HE staining showed nerve axons and myelin sheaths, which were destroyed immediately after the injury, were recovered with EA treatment. The expressions of Beclin-1 and LC3 were significantly elevated and the expression of P62 was markedly reduced in FNI rats (P<0.01); however, EA treatment reversed these abnormal changes (P<0.01). Meanwhile, EA stimulation significantly increased the levels of GDNF, Rai, PI3K, and mTOR (P<0.01). After exogenous administration with autophagy inhibitor 3-MA or GDNF antagonist, the repair effect of EA on facial function was attenuated (P<0.05 or P<0.01).
CONCLUSIONS
EA could promote the recovery of facial function and repair the facial nerve damages in a rat model of FNI. EA may exert this neuroreparative effect through mediating the release of GDNF, activating the PI3K/mTOR signaling pathway, and further regulating the autophagy of facial nerves.
Rats
;
Male
;
Animals
;
Rats, Sprague-Dawley
;
Electroacupuncture
;
Phosphatidylinositol 3-Kinase/metabolism*
;
Facial Nerve Injuries/therapy*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Beclin-1
;
Glial Cell Line-Derived Neurotrophic Factor
;
Signal Transduction
;
TOR Serine-Threonine Kinases/metabolism*
;
Autophagy
;
Mammals/metabolism*
2.BMP7 expression in mammalian cortical radial glial cells increases the length of the neurogenic period.
Zhenmeiyu LI ; Guoping LIU ; Lin YANG ; Mengge SUN ; Zhuangzhi ZHANG ; Zhejun XU ; Yanjing GAO ; Xin JIANG ; Zihao SU ; Xiaosu LI ; Zhengang YANG
Protein & Cell 2024;15(1):21-35
The seat of human intelligence is the human cerebral cortex, which is responsible for our exceptional cognitive abilities. Identifying principles that lead to the development of the large-sized human cerebral cortex will shed light on what makes the human brain and species so special. The remarkable increase in the number of human cortical pyramidal neurons and the size of the human cerebral cortex is mainly because human cortical radial glial cells, primary neural stem cells in the cortex, generate cortical pyramidal neurons for more than 130 days, whereas the same process takes only about 7 days in mice. The molecular mechanisms underlying this difference are largely unknown. Here, we found that bone morphogenic protein 7 (BMP7) is expressed by increasing the number of cortical radial glial cells during mammalian evolution (mouse, ferret, monkey, and human). BMP7 expression in cortical radial glial cells promotes neurogenesis, inhibits gliogenesis, and thereby increases the length of the neurogenic period, whereas Sonic Hedgehog (SHH) signaling promotes cortical gliogenesis. We demonstrate that BMP7 signaling and SHH signaling mutually inhibit each other through regulation of GLI3 repressor formation. We propose that BMP7 drives the evolutionary expansion of the mammalian cortex by increasing the length of the neurogenic period.
Animals
;
Mice
;
Humans
;
Ependymoglial Cells/metabolism*
;
Hedgehog Proteins/metabolism*
;
Ferrets/metabolism*
;
Cerebral Cortex
;
Neurogenesis
;
Mammals/metabolism*
;
Neuroglia/metabolism*
;
Bone Morphogenetic Protein 7/metabolism*
3.Low XIST expression in Sertoli cells of Klinefelter syndrome patients causes high susceptibility of these cells to an extra X chromosome.
Liang-Yu ZHAO ; Peng LI ; Chen-Cheng YAO ; Ru-Hui TIAN ; Yu-Xin TANG ; Yu-Zhuo CHEN ; Zhi ZHOU ; Zheng LI
Asian Journal of Andrology 2023;25(6):662-673
Klinefelter syndrome (KS) is the most common genetic cause of human male infertility. However, the effect of the extra X chromosome on different testicular cell types remains poorly understood. Here, we profiled testicular single-cell transcriptomes from three KS patients and normal karyotype control individuals. Among the different somatic cells, Sertoli cells showed the greatest transcriptome changes in KS patients. Further analysis showed that X-inactive-specific transcript ( XIST ), a key factor that inactivates one X chromosome in female mammals, was widely expressed in each testicular somatic cell type but not in Sertoli cells. The loss of XIST in Sertoli cells leads to an increased level of X chromosome genes, and further disrupts their transcription pattern and cellular function. This phenomenon was not detected in other somatic cells such as Leydig cells and vascular endothelial cells. These results proposed a new mechanism to explain why testicular atrophy in KS patients is heterogeneous with loss of seminiferous tubules but interstitial hyperplasia. Our study provides a theoretical basis for subsequent research and related treatment of KS by identifying Sertoli cell-specific X chromosome inactivation failure.
Animals
;
Humans
;
Male
;
Female
;
Sertoli Cells/metabolism*
;
Klinefelter Syndrome/genetics*
;
Endothelial Cells
;
Testis/metabolism*
;
X Chromosome/metabolism*
;
Mammals/genetics*
4.Protective Mechanism of Cordyceps sinensis Treatment on Acute Kidney Injury-Induced Acute Lung Injury through AMPK/mTOR Signaling Pathway.
Ruo-Lin WANG ; Shu-Hua LIU ; Si-Heng SHEN ; Lu-Yong JIAN ; Qi YUAN ; Hua-Hui GUO ; Jia-Sheng HUANG ; Peng-Hui CHEN ; Ren-Fa HUANG
Chinese journal of integrative medicine 2023;29(10):875-884
OBJECTIVE:
To investigate protective effect of Cordyceps sinensis (CS) through autophagy-associated adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway in acute kidney injury (AKI)-induced acute lung injury (ALI).
METHODS:
Forty-eight male Sprague-Dawley rats were divided into 4 groups according to a random number table, including the normal saline (NS)-treated sham group (sham group), NS-treated ischemia reperfusion injury (IRI) group (IRI group), and low- (5 g/kg·d) and high-dose (10 g/kg·d) CS-treated IRI groups (CS1 and CS2 groups), 12 rats in each group. Nephrectomy of the right kidney was performed on the IRI rat model that was subjected to 60 min of left renal pedicle occlusion followed by 12, 24, 48, and 72 h of reperfusion. The wet-to-dry (W/D) ratio of lung, levels of serum creatinine (Scr), blood urea nitrogen (BUN), inflammatory cytokines such as interleukin- β and tumor necrosis factor- α, and biomarkers of oxidative stress such as superoxide dismutase, malonaldehyde (MDA) and myeloperoxidase (MPO), were assayed. Histological examinations were conducted to determine damage of tissues in the kidney and lung. The protein expressions of light chain 3 II/light chain 3 I (LC3-II/LC3-I), uncoordinated-51-like kinase 1 (ULK1), P62, AMPK and mTOR were measured by Western blot and immunohistochemistry, respectively.
RESULTS:
The renal IRI induced pulmonary injury following AKI, resulting in significant increases in W/D ratio of lung, and the levels of Scr, BUN, inflammatory cytokines, MDA and MPO (P<0.01); all of these were reduced in the CS groups (P<0.05 or P<0.01). Compared with the IRI groups, the expression levels of P62 and mTOR were significantly lower (P<0.05 or P<0.01), while those of LC3-II/LC3-I, ULK1, and AMPK were significantly higher in the CS2 group (P<0.05 or P<0.01).
CONCLUSION
CS had a potential in treating lung injury following renal IRI through activation of the autophagy-related AMPK/mTOR signaling pathway in AKI-induced ALI.
Rats
;
Male
;
Animals
;
AMP-Activated Protein Kinases/metabolism*
;
Cordyceps/metabolism*
;
Rats, Sprague-Dawley
;
Kidney/pathology*
;
Acute Kidney Injury/metabolism*
;
Signal Transduction
;
TOR Serine-Threonine Kinases/metabolism*
;
Reperfusion Injury/metabolism*
;
Cytokines/metabolism*
;
Acute Lung Injury/drug therapy*
;
Mammals/metabolism*
5.Radix Scrophulariae Extracts Exert Effect on Hyperthyroidism via MST1/Hippo Signaling Pathway.
Ning ZHANG ; Tao YE ; Xu LU ; Zi-Hui LI ; Ling LI
Chinese journal of integrative medicine 2023;29(11):998-1006
OBJECTIVE:
To explore the mechanism of Radix Scrophulariae (RS) extracts in the treatment of hyperthyroidism rats by regulating proliferation, apoptosis, and autophagy of thyroid cell through the mammalian sterile 20-like kinase 1 (MST1)/Hippo pathway.
METHODS:
Twenty-four rats were randomly divided into 4 groups according to a random number table: control, model group, RS, and RS+Hippo inhibitor (XMU-MP-1) groups (n=6 per group). Rats were gavaged with levothyroxine sodium tablet suspension (LST, 8 μ g/kg) for 21 days except for the control group. Afterwards, rats in the RS group were gavaged with RS extracts at the dose of 1,350 mg/kg, and rats in the RS+XMU-MP-1 group were gavaged with 1,350 mg/kg RS extracts and 1 mg/kg XMU-MP-1. After 15 days of administration, thyroid gland was taken for gross observation, and histopathological changes were observed by hematoxylin-eosin staining. The structure of Golgi secretory vesicles in thyroid tissues was observed by transmission electron microscopy. The expression of thyrotropin receptor (TSH-R) was observed by immunohistochemistry. Terminal-deoxynucleoitidyl transferase mediated nick end labeling assay was used to detect cell apoptosis in thyroid tissues. Real-time quantity primer chain reaction and Western blot were used to detect the expressions of MST1, p-large tumor suppressor gene 1 (LATS1), p-Yes1 associated transcriptional regulator (YAP), proliferating cell nuclear antigen (PCNA), G1/S-specific cyclin-D1 (Cyclin D1), B-cell lymphoma-2 (Bcl-2), Caspase-3, microtubule-associated proeins light chain 3 II/I (LC3-II/I), and recombinant human autophagy related 5 (ATG5). Thyroxine (T4) level was detected by enzyme-linked immunosorbent assay.
RESULTS:
The thyroid volume of rats in the model group was significantly increased compared to the normal control group (P<0.01), and pathological changes such as uneven size of follicular epithelial cells, disorderly arrangement, and irregular morphology occurred. The secretion of small vesicles by Golgi apparatus was reduced, and the expressions of receptor protein TSH-R and T4 were significantly increased (P<0.01), while the expressions of MST1, p-LATS1, p-YAP, Caspase-3, LC3-II/I, and ATG5 were significantly decreased (P<0.01). The expressions of Bcl-2, PCNA, and cyclin D1 were significantly increased (P<0.01). Compared with the model group, RS extracts reduced the volume of thyroid gland, improved pathological condition of the thyroid gland, promoted secretion of the secretory vesicles with double-layer membrane structure in thyroid Golgi, significantly inhibited the expression of TSH-R and T4 levels (P<0.01), upregulated MST1, p-LATS1, p-YAP, Caspase-3, LC3-II/I, and ATG5 expressions (P<0.01), and downregulated Bcl-2, PCNA, and Cyclin D1 expressions (P<0.01). XMU-MP-1 inhibited the intervention effects of RS extracts (P<0.01).
CONCLUSION
RS extracts could inhibit proliferation and promote apoptosis and autophagy in thyroid tissues through MST1/Hippo pathway for treating hyperthyroidism.
Rats
;
Humans
;
Animals
;
Hippo Signaling Pathway
;
Proliferating Cell Nuclear Antigen/metabolism*
;
Cyclin D1/pharmacology*
;
Caspase 3/metabolism*
;
Protein Serine-Threonine Kinases/pharmacology*
;
Apoptosis
;
Hyperthyroidism/drug therapy*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Thyrotropin/pharmacology*
;
Mammals/metabolism*
6.Distinct mononuclear diploid cardiac subpopulation with minimal cell-cell communications persists in embryonic and adult mammalian heart.
Miaomiao ZHU ; Huamin LIANG ; Zhe ZHANG ; Hao JIANG ; Jingwen PU ; Xiaoyi HANG ; Qian ZHOU ; Jiacheng XIANG ; Ximiao HE
Frontiers of Medicine 2023;17(5):939-956
A small proportion of mononuclear diploid cardiomyocytes (MNDCMs), with regeneration potential, could persist in adult mammalian heart. However, the heterogeneity of MNDCMs and changes during development remains to be illuminated. To this end, 12 645 cardiac cells were generated from embryonic day 17.5 and postnatal days 2 and 8 mice by single-cell RNA sequencing. Three cardiac developmental paths were identified: two switching to cardiomyocytes (CM) maturation with close CM-fibroblast (FB) communications and one maintaining MNDCM status with least CM-FB communications. Proliferative MNDCMs having interactions with macrophages and non-proliferative MNDCMs (non-pMNDCMs) with minimal cell-cell communications were identified in the third path. The non-pMNDCMs possessed distinct properties: the lowest mitochondrial metabolisms, the highest glycolysis, and high expression of Myl4 and Tnni1. Single-nucleus RNA sequencing and immunohistochemical staining further proved that the Myl4+Tnni1+ MNDCMs persisted in embryonic and adult hearts. These MNDCMs were mapped to the heart by integrating the spatial and single-cell transcriptomic data. In conclusion, a novel non-pMNDCM subpopulation with minimal cell-cell communications was unveiled, highlighting the importance of microenvironment contribution to CM fate during maturation. These findings could improve the understanding of MNDCM heterogeneity and cardiac development, thus providing new clues for approaches to effective cardiac regeneration.
Animals
;
Mice
;
Diploidy
;
Heart
;
Myocytes, Cardiac/metabolism*
;
Cell Communication
;
Gene Expression Profiling
;
Mitochondria
;
Regeneration
;
Mammals/genetics*
7.DJ1 Ameliorates AD-like Pathology in the Hippocampus of APP/PS1 Mice.
Yang Yang PENG ; Meng Xin LI ; Wen Jie LI ; Yuan XUE ; Yu Fan MIAO ; Yu Lin WANG ; Xiao Chen FAN ; Lu Lu TANG ; Han Lu SONG ; Qian ZHANG ; Xing LI
Biomedical and Environmental Sciences 2023;36(11):1028-1044
OBJECTIVE:
To explore whether the protein Deglycase protein 1 (DJ1) can ameliorate Alzheimer's disease (AD)-like pathology in Amyloid Precursor Protein/Presenilin 1 (APP/PS1) double transgenic mice and its possible mechanism to provide a theoretical basis for exploring the pathogenesis of AD.
METHODS:
Adeno-associated viral vectors (AAV) of DJ1-overexpression or DJ1-knockdown were injected into the hippocampus of 7-month-old APP/PS1 mice to construct models of overexpression or knockdown. Mice were divided into the AD model control group (MC), AAV vector control group (NC), DJ1-overexpression group (DJ1 +), and DJ1-knockdown group (DJ1 -). After 21 days, the Morris water maze test, immunohistochemistry, immunofluorescence, and western blotting were used to evaluate the effects of DJ1 on mice.
RESULTS:
DJ1 + overexpression decreased the latency and increased the number of platform traversals in the water maze test. DJ1 - cells were cured and atrophied, and the intercellular structure was relaxed; the number of age spots and the expression of AD-related proteins were significantly increased. DJ1 + increased the protein expression of Nuclear factor erythroid 2-related factor 2 (NRF2), heme oxygenase-1 (HO-1), light chain 3 (LC3), phosphorylated AMPK (p-AMPK), and B cell lymphoma-2 (BCL-2), as well as the antioxidant levels of total superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC), and Glutathione peroxidase (GSH-PX), while decreasing the levels of Kelch-like hydrates-associated protein 1 (Keap1), mammalian target of rapamycin (mTOR), p62/sequestosome1 (p62/SQSTM1), Caspase3, and malondialdehyde (MDA).
CONCLUSION
DJ1-overexpression can ameliorate learning, memory, and AD-like pathology in APP/PS1 mice, which may be related to the activation of the NRF2/HO-1 and AMPK/mTOR pathways by DJ1.
Animals
;
Mice
;
Alzheimer Disease/therapy*
;
AMP-Activated Protein Kinases/metabolism*
;
Amyloid beta-Protein Precursor/metabolism*
;
Antioxidants/metabolism*
;
Disease Models, Animal
;
Hippocampus/metabolism*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Mammals/metabolism*
;
Mice, Inbred C57BL
;
Mice, Transgenic
;
NF-E2-Related Factor 2/metabolism*
;
Presenilin-1/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
8.Single chain antibody fragment display systems: a review.
Yao CHEN ; Xingfu SHU ; Yu ZHAO ; Bowen ZHANG ; Zhongren MA ; Haixia ZHANG
Chinese Journal of Biotechnology 2023;39(9):3681-3694
Single chain antibody fragment (scFv) is a small molecule composed of a variable region of heavy chain (VH) and a variable region of light chain (VL) of an antibody, and these two chains are connected by a flexible short peptide. scFv is the smallest functional fragment with complete antigen-binding activity, which contains both the antibody-recognizing site and the antigen-binding site. Compared with other antibodies, scFv has the advantages of small molecular weight, strong penetration, low immunogenicity, and easy expression. Currently, the most commonly used display systems for scFv mainly include the phage display system, ribosome display system, mRNA display system, yeast cell surface display system and mammalian cell display system. In recent years, with the development of scFv in the field of medicine, biology, and food safety, they have also attracted much attention in the sectors of biosynthesis and applied research. This review summarizes the advances of scFv display systems in recent years in order to facilitate scFv screening and application.
Animals
;
Immunoglobulin Variable Region/genetics*
;
Immunoglobulin Fragments/metabolism*
;
Single-Chain Antibodies/metabolism*
;
Peptide Library
;
Mammals/genetics*
9.Effects of manipulating lactate dehydrogenase gene on metabolism of HEK-293 and production of human adenovirus.
Junqing MIAO ; Xiaoping YI ; Xiangchao LI ; Yingping ZHUANG
Chinese Journal of Biotechnology 2023;39(9):3863-3875
Reducing lactate accumulation has always been a goal of the mammalian cell biotechnology industry. When animal cells are cultured in vitro, the accumulation of lactate is mainly the combined result of two metabolic pathways. On one hand, glucose generates lactate under the function of lactate dehydrogenase A (LDHA); on the other hand, lactate can be oxidized to pyruvate by LDHB or LDHC and re-enter the TCA cycle. This study comprehensively evaluated the effects of LDH manipulation on the growth, metabolism and human adenovirus (HAdV) production of human embryonic kidney 293 (HEK-293) cells, providing a theoretical basis for engineering the lactate metabolism in mammalian cells. By knocking out ldha gene and overexpression of ldhb and ldhc genes, the metabolic efficiency of HEK-293 cells was effectively improved, and HAdV production was significantly increased. Compared with the control cell, LDH manipulation promoted cell growth, reduced the accumulation of lactate and ammonia, significantly enhanced the efficiency of substrate and energy metabolism of cells, and significantly increased the HAdV production capacity of HEK-293 cells. Among these LDH manipulation measures, ldhc gene overexpression performed the best, with the maximum cell density increased by about 38.7%. The yield of lactate to glucose and ammonia to glutamine decreased by 33.8% and 63.3%, respectively; and HAdV titer increased by at least 16 times. In addition, the ATP production rate, ATP/O2 ratio, ATP/ADP ratio and NADH content of the modified cell lines were increased to varying degrees, and the energy metabolic efficiency was significantly improved.
Animals
;
Humans
;
L-Lactate Dehydrogenase/genetics*
;
Lactic Acid
;
Adenoviruses, Human
;
Ammonia
;
HEK293 Cells
;
Glucose/metabolism*
;
Adenosine Triphosphate/metabolism*
;
Kidney/metabolism*
;
Mammals/metabolism*
10.Construction of foot-and-mouth disease virus like particles-induced expression vectors and screening of BHK-21 cell pools.
Shuzhen TAN ; Hu DONG ; Shiqi SUN ; Huichen GUO
Chinese Journal of Biotechnology 2023;39(12):4849-4860
Transient expression is the major method to express foot-and-mouth disease virus (FMDV) capsid proteins in mammalian cells. To achieve stable expression of FMDV capsid proteins and efficient assembly of virus like particles (VLPs) in cells, the plasmids of piggyBac (PB) transposon-constitutive expression and PB transposon-tetracycline (Tet) inducible expression vectors were constructed. The function of the plasmids was tested by fluorescent proteins. By adding antibiotics, the constitutive cell pools (C-WT, C-L127P) expressing P12A3C (WT/L127P) genes and the inducible cell pools (I-WT, I-L127P) expressing P12A3C (WT/L127P) genes were generated. The genes of green fluorescent protein, 3C protease and reverse tetracycline transactivator (rtTA) were integrated into chromosome, which was confirmed by fluorescence observation and PCR testing. The cell pool I-L127P has a stronger production capacity of capsid proteins and VLPs, which was confirmed by Western blotting and enzyme linked immunosorbent assay (ELISA), respectively. In conclusion, inducing the chromosomal expression of FMDV capsid proteins was firstly reported, which may facilitate the technical process of mammalian production of FMDV VLPs vaccine and the construction of mammalian inducible expression systems for other proteins.
Animals
;
Foot-and-Mouth Disease Virus/genetics*
;
Capsid Proteins
;
Viral Proteins/metabolism*
;
Foot-and-Mouth Disease/prevention & control*
;
Tetracyclines/metabolism*
;
Viral Vaccines
;
Antibodies, Viral
;
Mammals/metabolism*

Result Analysis
Print
Save
E-mail