1.Automatic brain segmentation in cognitive impairment: Validation of AI-based AQUA software in the Southeast Asian BIOCIS cohort.
Ashwati VIPIN ; Rasyiqah BINTE SHAIK MOHAMED SALIM ; Regina Ey KIM ; Minho LEE ; Hye Weon KIM ; ZunHyan RIEU ; Nagaendran KANDIAH
Annals of the Academy of Medicine, Singapore 2025;54(8):467-475
INTRODUCTION:
Interpretation and analysis of magnetic resonance imaging (MRI) scans in clinical settings comprise time-consuming visual ratings and complex neuroimage processing that require trained professionals. To combat these challenges, artificial intelligence (AI) techniques can aid clinicians in interpreting brain MRI for accurate diagnosis of neurodegenerative diseases but they require extensive validation. Thus, the aim of this study was to validate the use of AI-based AQUA (Neurophet Inc., Seoul, Republic of Korea) segmentation software in a Southeast Asian community-based cohort with normal cognition, mild cognitive impairment (MCI) and dementia.
METHOD:
Study participants belonged to the community-based Biomarker and Cognition Study in Singapore. Participants aged between 30 and 95 years, having cognitive concerns, with no diagnosis of major psychiatric, neurological or systemic disorders who were recruited consecutively between April 2022 and July 2023 were included. Participants underwent neuropsychological assessments and structural MRI, and were classified as cognitively normal, with MCI or with dementia. MRI pre-processing using automated pipelines, along with human-based visual ratings, were compared against AI-based automated AQUA output. Default mode network grey matter (GM) volumes were compared between cognitively normal, MCI and dementia groups.
RESULTS:
A total of 90 participants (mean age at visit was 63.32±10.96 years) were included in the study (30 cognitively normal, 40 MCI and 20 dementia). Non-parametric Spearman correlation analysis indicated that AQUA-based and human-based visual ratings were correlated with total (ρ=0.66; P<0.0001), periventricular (ρ=0.50; P<0.0001) and deep (ρ=0.57; P<0.0001) white matter hyperintensities (WMH). Additionally, volumetric WMH obtained from AQUA and automated pipelines was also strongly correlated (ρ=0.84; P<0.0001) and these correlations remained after controlling for age at visit, sex and diagnosis. Linear regression analyses illustrated significantly different AQUA-derived default mode network GM volumes between cognitively normal, MCI and dementia groups. Dementia participants had significant atrophy in the posterior cingulate cortex compared to cognitively normal participants (P=0.021; 95% confidence interval [CI] -1.25 to -0.08) and in the hippocampus compared to cognitively normal (P=0.0049; 95% CI -1.05 to -0.16) and MCI participants (P=0.0036; 95% CI -1.02 to -0.17).
CONCLUSION
Our findings demonstrate high concordance between human-based visual ratings and AQUA-based ratings of WMH. Additionally, the AQUA GM segmentation pipeline showed good differentiation in key regions between cognitively normal, MCI and dementia participants. Based on these findings, the automated AQUA software could aid clinicians in examining MRI scans of patients with cognitive impairment.
Humans
;
Cognitive Dysfunction/pathology*
;
Magnetic Resonance Imaging/methods*
;
Male
;
Middle Aged
;
Female
;
Aged
;
Artificial Intelligence
;
Software
;
Dementia/diagnostic imaging*
;
Aged, 80 and over
;
Adult
;
Singapore
;
Neuropsychological Tests
;
Brain/pathology*
;
Cohort Studies
;
Gray Matter/pathology*
;
Southeast Asian People
2.Iron deposition in subcortical nuclei of Parkinson's disease: A meta-analysis of quantitative iron-sensitive magnetic resonance imaging studies.
Jianing JIN ; Dongning SU ; Junjiao ZHANG ; Joyce S T LAM ; Junhong ZHOU ; Tao FENG
Chinese Medical Journal 2025;138(6):678-692
BACKGROUND:
Iron deposition plays a crucial role in the pathophysiology of Parkinson's disease (PD), yet the distribution pattern of iron deposition in the subcortical nuclei has been inconsistent across previous studies. We aimed to assess the difference patterns of iron deposition detected by quantitative iron-sensitive magnetic resonance imaging (MRI) between patients with PD and patients with atypical parkinsonian syndromes (APSs), and between patients with PD and healthy controls (HCs).
METHODS:
A systematic literature search was conducted on PubMed, Embase, and Web of Science databases to identify studies investigating the iron content in PD patients using the iron-sensitive MRI techniques (R2 * and quantitative susceptibility mapping [QSM]), up until May 1, 2023. The quality assessment of case-control and cohort studies was performed using the Newcastle-Ottawa Scale, whereas diagnostic studies were assessed using the Quality Assessment of Diagnostic Accuracy Studies-2. Standardized mean differences and summary estimates of sensitivity, specificity, and area under the curve (AUC) were calculated for iron content, using a random effects model. We also conducted the subgroup-analysis based on the MRI sequence and meta-regression.
RESULTS:
Seventy-seven studies with 3192 PD, 209 multiple system atrophy (MSA), 174 progressive supranuclear palsy (PSP), and 2447 HCs were included. Elevated iron content in substantia nigra (SN) pars reticulata ( P <0.001) and compacta ( P <0.001), SN ( P <0.001), red nucleus (RN, P <0.001), globus pallidus ( P <0.001), putamen (PUT, P = 0.021), and thalamus ( P = 0.029) were found in PD patients compared with HCs. PD patients showed lower iron content in PUT ( P <0.001), RN ( P = 0.003), SN ( P = 0.017), and caudate nucleus ( P = 0.017) than MSA patients, and lower iron content in RN ( P = 0.001), PUT ( P <0.001), globus pallidus ( P = 0.004), SN ( P = 0.015), and caudate nucleus ( P = 0.001) than PSP patients. The highest diagnostic accuracy distinguishing PD from HCs was observed in SN (AUC: 0.85), and that distinguishing PD from MSA was found in PUT (AUC: 0.90). In addition, the best diagnostic performance was achieved in the RN for distinguishing PD from PSP (AUC: 0.86).
CONCLUSIONS:
Quantitative iron-sensitive MRI could quantitatively detect the iron content of subcortical nuclei in PD and APSs, while it may be insufficient to accurately diagnose PD. Future studies are needed to explore the role of multimodal MRI in the diagnosis of PD.
REGISTRISION
PROSPERO (CRD42022344413).
Humans
;
Parkinson Disease/diagnostic imaging*
;
Magnetic Resonance Imaging/methods*
;
Iron/metabolism*
3.Preliminary clinical practice of radical prostatectomy without preoperative biopsy.
Ranlu LIU ; Lu YIN ; Shenfei MA ; Feiya YANG ; Zhenpeng LIAN ; Mingshuai WANG ; Ye LEI ; Xiying DONG ; Chen LIU ; Dong CHEN ; Sujun HAN ; Yong XU ; Nianzeng XING
Chinese Medical Journal 2025;138(6):721-728
BACKGROUND:
At present, biopsy is essential for the diagnosis of prostate cancer (PCa) before radical prostatectomy (RP). However, with the development of prostate-specific membrane antigen positron emission tomography/computed tomography (PSMA PET/CT) and multiparametric magnetic resonance imaging (mpMRI), it might be feasible to avoid biopsy before RP. Herein, we aimed to explore the feasibility of avoiding biopsy before RP in patients highly suspected of having PCa after assessment of PSMA PET/CT and mpMRI.
METHODS:
Between December 2017 and April 2022, 56 patients with maximum standardized uptake value (SUVmax) of ≥4 and Prostate Imaging Reporting and Data System (PI-RADS) ≥4 lesions who received RP without preoperative biopsy were enrolled from two tertiary hospitals. The consistency between clinical and pathological diagnoses was evaluated. Preoperative characteristics were compared among patients with different pathological types, T stages, International Society of Urological Pathology (ISUP) grades, and European Association of Urology (EAU) risk groups.
RESULTS:
Fifty-five (98%) patients were confirmed with PCa by pathology, including 49 (89%) with clinically significant prostate cancer (csPCa, defined as ISUP grade ≥2 malignancy). One patient was diagnosed with high-grade prostatic intraepithelial neoplasia (HGPIN). CsPCa patients, compared with clinically insignificant prostate cancer (cisPCa) and HGPIN patients, were associated with a higher level of prostate-specific antigen (22.9 ng/mL vs . 10.0 ng/mL, P = 0.032), a lower median prostate volume (32.2 mL vs . 65.0 mL, P = 0.001), and a higher median SUVmax (13.3 vs . 5.6, P <0.001).
CONCLUSIONS
It might be feasible to avoid biopsy before RP for patients with a high probability of PCa based on PSMA PET/CT and mpMRI. However, the diagnostic efficacy of csPCa with PI-RADS ≥4 and SUVmax of ≥4 is inadequate for performing a procedure such as RP. Further prospective multicenter studies with larger sample sizes are necessary to confirm our perspectives and establish predictive models with PSMA PET/CT and mpMRI.
Humans
;
Male
;
Prostatectomy/methods*
;
Prostatic Neoplasms/diagnosis*
;
Middle Aged
;
Aged
;
Positron Emission Tomography Computed Tomography/methods*
;
Biopsy
;
Multiparametric Magnetic Resonance Imaging
;
Prostate-Specific Antigen/metabolism*
4.Application and considerations of artificial intelligence and neuroimaging in the study of brain effect mechanisms of acupuncture and moxibustion.
Ruqi ZHANG ; Yiding ZHAO ; Shengchun WANG
Chinese Acupuncture & Moxibustion 2025;45(4):428-434
Electroencephalography (EEG) and magnetic resonance imaging (MRI), as neuroimaging technologies, provided objective and visualized technical tools for analyzing the brain effect mechanisms of acupuncture and moxibustion from the perspectives of brain structure, function, metabolism, and hemodynamics. The advancement of artificial intelligence (AI) algorithms can compensate for issues such as the large and scattered nature of neuroimaging data, inconsistent quality, and high heterogeneity of image information. The integration of AI with neuroimaging can facilitate individualized, intelligent, and precise prediction of acupuncture and moxibustion effects, enable intelligent classification of differential acupuncture responses, and identify brain activation patterns. This paper focuses on EEG and MRI, analyzing how machine learning and deep learning optimize multimodal neuroimaging data and their applications in the study of acupuncture and moxibustion brain effects mechanisms. Furthermore, it highlights current research gaps and limitations to provide insights for future studies on acupuncture brain effects mechanisms.
Humans
;
Acupuncture Therapy
;
Brain/physiology*
;
Moxibustion
;
Neuroimaging/methods*
;
Artificial Intelligence
;
Magnetic Resonance Imaging
;
Electroencephalography
5.ResNet-Vision Transformer based MRI-endoscopy fusion model for predicting treatment response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: A multicenter study.
Junhao ZHANG ; Ruiqing LIU ; Di HAO ; Guangye TIAN ; Shiwei ZHANG ; Sen ZHANG ; Yitong ZANG ; Kai PANG ; Xuhua HU ; Keyu REN ; Mingjuan CUI ; Shuhao LIU ; Jinhui WU ; Quan WANG ; Bo FENG ; Weidong TONG ; Yingchi YANG ; Guiying WANG ; Yun LU
Chinese Medical Journal 2025;138(21):2793-2803
BACKGROUND:
Neoadjuvant chemoradiotherapy followed by radical surgery has been a common practice for patients with locally advanced rectal cancer, but the response rate varies among patients. This study aimed to develop a ResNet-Vision Transformer based magnetic resonance imaging (MRI)-endoscopy fusion model to precisely predict treatment response and provide personalized treatment.
METHODS:
In this multicenter study, 366 eligible patients who had undergone neoadjuvant chemoradiotherapy followed by radical surgery at eight Chinese tertiary hospitals between January 2017 and June 2024 were recruited, with 2928 pretreatment colonic endoscopic images and 366 pelvic MRI images. An MRI-endoscopy fusion model was constructed based on the ResNet backbone and Transformer network using pretreatment MRI and endoscopic images. Treatment response was defined as good response or non-good response based on the tumor regression grade. The Delong test and the Hanley-McNeil test were utilized to compare prediction performance among different models and different subgroups, respectively. The predictive performance of the MRI-endoscopy fusion model was comprehensively validated in the test sets and was further compared to that of the single-modal MRI model and single-modal endoscopy model.
RESULTS:
The MRI-endoscopy fusion model demonstrated favorable prediction performance. In the internal validation set, the area under the curve (AUC) and accuracy were 0.852 (95% confidence interval [CI]: 0.744-0.940) and 0.737 (95% CI: 0.712-0.844), respectively. Moreover, the AUC and accuracy reached 0.769 (95% CI: 0.678-0.861) and 0.729 (95% CI: 0.628-0.821), respectively, in the external test set. In addition, the MRI-endoscopy fusion model outperformed the single-modal MRI model (AUC: 0.692 [95% CI: 0.609-0.783], accuracy: 0.659 [95% CI: 0.565-0.775]) and the single-modal endoscopy model (AUC: 0.720 [95% CI: 0.617-0.823], accuracy: 0.713 [95% CI: 0.612-0.809]) in the external test set.
CONCLUSION
The MRI-endoscopy fusion model based on ResNet-Vision Transformer achieved favorable performance in predicting treatment response to neoadjuvant chemoradiotherapy and holds tremendous potential for enabling personalized treatment regimens for locally advanced rectal cancer patients.
Humans
;
Rectal Neoplasms/diagnostic imaging*
;
Magnetic Resonance Imaging/methods*
;
Male
;
Female
;
Middle Aged
;
Neoadjuvant Therapy/methods*
;
Aged
;
Adult
;
Chemoradiotherapy/methods*
;
Endoscopy/methods*
;
Treatment Outcome
6.Artificial intelligence in medical imaging: From task-specific models to large-scale foundation models.
Yueyan BIAN ; Jin LI ; Chuyang YE ; Xiuqin JIA ; Qi YANG
Chinese Medical Journal 2025;138(6):651-663
Artificial intelligence (AI), particularly deep learning, has demonstrated remarkable performance in medical imaging across a variety of modalities, including X-ray, computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, positron emission tomography (PET), and pathological imaging. However, most existing state-of-the-art AI techniques are task-specific and focus on a limited range of imaging modalities. Compared to these task-specific models, emerging foundation models represent a significant milestone in AI development. These models can learn generalized representations of medical images and apply them to downstream tasks through zero-shot or few-shot fine-tuning. Foundation models have the potential to address the comprehensive and multifactorial challenges encountered in clinical practice. This article reviews the clinical applications of both task-specific and foundation models, highlighting their differences, complementarities, and clinical relevance. We also examine their future research directions and potential challenges. Unlike the replacement relationship seen between deep learning and traditional machine learning, task-specific and foundation models are complementary, despite inherent differences. While foundation models primarily focus on segmentation and classification, task-specific models are integrated into nearly all medical image analyses. However, with further advancements, foundation models could be applied to other clinical scenarios. In conclusion, all indications suggest that task-specific and foundation models, especially the latter, have the potential to drive breakthroughs in medical imaging, from image processing to clinical workflows.
Humans
;
Artificial Intelligence
;
Deep Learning
;
Diagnostic Imaging/methods*
;
Magnetic Resonance Imaging
;
Tomography, X-Ray Computed
;
Positron-Emission Tomography
7.Alterations of diffusion kurtosis measures in gait-related white matter in the "ON-OFF state" of Parkinson's disease.
Xuan WEI ; Shiya WANG ; Mingkai ZHANG ; Ying YAN ; Zheng WANG ; Wei WEI ; Houzhen TUO ; Zhenchang WANG
Chinese Medical Journal 2025;138(9):1094-1102
BACKGROUND:
Gait impairment is closely related to quality of life in patients with Parkinson's disease (PD). This study aimed to explore alterations in brain microstructure in PD patients and healthy controls (HCs) and to identify the correlation of gait impairment in the ON and OFF states of patients with PD, respectively.
METHODS:
We enrolled 24 PD patients and 29 HCs from the Movement Disorders Program at Beijing Friendship Hospital Capital Medical University between 2019 and 2020. We acquired magnetic resonance imaging (MRI) scans and processed the diffusion kurtosis imaging (DKI) images. Preprocessing of diffusion-weighted data was performed with Mrtrix3 software, using a directional distribution function to track participants' main white matter fiber bundles. Demographic and clinical characteristics were recorded. Quantitative gait and clinical scales were used to assess the status of medication ON and OFF in PD patients.
RESULTS:
The axial kurtosis (AK), mean kurtosis (MK), and radial kurtosis (RK) of five specific white matter fiber tracts, the bilateral corticospinal tract, left superior longitudinal fasciculus, left anterior thalamic radiation, forceps minor, and forceps major were significantly higher in PD patients compared to HCs. Additionally, the MK values were negatively correlated with Timed Up and Go Test (TUG) scores in both the ON and OFF in PD patients. Within the PD group, higher AK, MK, and RK values, whether the patients were ON or OFF, were associated with better gait performance (i.e., higher velocity and stride length).
CONCLUSIONS
PD exhibits characteristic regional patterns of white matter microstructural degradation. Correlations between objective gait parameters and DKI values suggest that dopamine-responsive gait function depends on preserved white matter microstructure. DKI-based Tract-Based Spatial Statistics (TBSS) analysis may serve as a tool for evaluating PD-related motor impairments (e.g., gait impairment) and could yield potential neuroimaging biomarkers.
Humans
;
Parkinson Disease/diagnostic imaging*
;
White Matter/physiopathology*
;
Male
;
Female
;
Middle Aged
;
Aged
;
Gait/physiology*
;
Diffusion Magnetic Resonance Imaging/methods*
;
Diffusion Tensor Imaging/methods*
8.Classification of Alzheimer's disease based on multi-example learning and multi-scale feature fusion.
An ZENG ; Zhifu SHUAI ; Dan PAN ; Jinzhi LIN
Journal of Biomedical Engineering 2025;42(1):132-139
Alzheimer's disease (AD) classification models usually segment the entire brain image into voxel blocks and assign them labels consistent with the entire image, but not every voxel block is closely related to the disease. To this end, an AD auxiliary diagnosis framework based on weakly supervised multi-instance learning (MIL) and multi-scale feature fusion is proposed, and the framework is designed from three aspects: within the voxel block, between voxel blocks, and high-confidence voxel blocks. First, a three-dimensional convolutional neural network was used to extract deep features within the voxel block; then the spatial correlation information between voxel blocks was captured through position encoding and attention mechanism; finally, high-confidence voxel blocks were selected and combined with multi-scale information fusion strategy to integrate key features for classification decision. The performance of the model was evaluated on the Alzheimer's Disease Neuroimaging Initiative (ADNI) and Open Access Series of Imaging Studies (OASIS) datasets. Experimental results showed that the proposed framework improved ACC and AUC by 3% and 4% on average compared with other mainstream frameworks in the two tasks of AD classification and mild cognitive impairment conversion classification, and could find the key voxel blocks that trigger the disease, providing an effective basis for AD auxiliary diagnosis.
Alzheimer Disease/diagnosis*
;
Humans
;
Neuroimaging/methods*
;
Neural Networks, Computer
;
Brain/diagnostic imaging*
;
Magnetic Resonance Imaging
;
Deep Learning
;
Machine Learning
9.Spherical measurement-based analysis of gradient nonlinearity in magnetic resonance imaging.
Xiaoli YANG ; Zhaolian WANG ; Qian WANG ; Yiting ZHANG ; Zixuan SONG ; Yuchang ZHANG ; Yafei QI ; Xiaopeng MA
Journal of Biomedical Engineering 2025;42(1):174-180
The gradient field, one of the core magnetic fields in magnetic resonance imaging (MRI) systems, is generated by gradient coils and plays a critical role in spatial encoding and the generation of echo signals. The uniformity or linearity of the gradient field directly impacts the quality and distortion level of MRI images. However, traditional point measurement methods lack accuracy in assessing the linearity of gradient fields, making it difficult to provide effective parameters for image distortion correction. This paper introduced a spherical measurement-based method that involved measuring the magnetic field distribution on a sphere, followed by detailed magnetic field calculations and linearity analysis. This study, applied to assess the nonlinearity of asymmetric head gradient coils, demonstrated more comprehensive and precise results compared to point measurement methods. This advancement not only strengthens the scientific basis for the design of gradient coils but also provides more reliable parameters and methods for the accurate correction of MRI image distortions.
Magnetic Resonance Imaging/instrumentation*
;
Humans
;
Image Processing, Computer-Assisted/methods*
;
Nonlinear Dynamics
;
Magnetic Fields
;
Algorithms
;
Phantoms, Imaging
10.Research progress on the characteristics of magnetoencephalography signals in depression.
Zhiyuan CHEN ; Yongzhi HUANG ; Haiqing YU ; Chunyan CAO ; Minpeng XU ; Dong MING
Journal of Biomedical Engineering 2025;42(1):189-196
Depression, a mental health disorder, has emerged as one of the significant challenges in the global public health domain. Investigating the pathogenesis of depression and accurately assessing the symptomatic changes are fundamental to formulating effective clinical diagnosis and treatment strategies. Utilizing non-invasive brain imaging technologies such as functional magnetic resonance imaging and scalp electroencephalography, existing studies have confirmed that the onset of depression is closely associated with abnormal neural activities and altered functional connectivity in multiple brain regions. Magnetoencephalography, unaffected by tissue conductivity and skull thickness, boasts high spatial resolution and signal-to-noise ratio, offering unique advantages and significant value in revealing the abnormal brain mechanisms and neural characteristics of depression. This review, starting from the rhythmic characteristics, nonlinear dynamic features, and connectivity characteristics of magnetoencephalography in depression patients, revisits the research progress on magnetoencephalography features related to depression, discusses current issues and future development trends, and provides insights for the study of pathophysiological mechanisms, as well as for clinical diagnosis and treatment of depression.
Humans
;
Magnetoencephalography/methods*
;
Brain/physiopathology*
;
Depression/diagnosis*
;
Electroencephalography
;
Magnetic Resonance Imaging

Result Analysis
Print
Save
E-mail