1.Magnesium sulfate use in adult patients with tetanus at Mariano Marcos Memorial Hospital & Medical Center
Stephen A. Ujano ; Guillermo L. Manalo III
Philippine Journal of Internal Medicine 2025;63(3):122-126
OBJECTIVE
This study aimed to determine whether adjunctive therapy with magnesium sulfate is more effective than diazepam alone in reducing mortality and morbidity rates among adult patients with tetanus admitted to Mariano Marcos Memorial Hospital and Medical Center (MMMH & MC) from January 1, 2012, to January 1, 2022.
METHODSRetrospective cohort study using chart review and descriptive statistics. included patients admitted at East Avenue Medical Center for DFU. The primary endpoint was major amputation of the lower extremities. Data were analyzed using Receiver Operating Characteristic (ROC) analysis and logistic regression.
RESULTSA total of 51 patients were included in the study, with 17 patients in the adjunct magnesium sulfate group and 34 patients in the diazepam group. Based on the results of this study, at a 95% confidence interval, ICU stay was significantly longer in the magnesium sulfate group compared to the diazepam group, along with an increased average hospital stay. There was no significant difference in patient mortality in terms of treatment, age, severity, ICU stay, or duration of mechanical ventilation.
CONCLUSIONThe use of magnesium sulfate as an adjunct treatment for tetanus is not superior to standard stand-alone diazepam, regardless of severity. Magnesium sulfate use is associated with a longer overall hospital stay. Lastly, hospital-acquired pneumonia and aspiration pneumonia significantly increase the risk of mortality among patients with tetanus, regardless of age, treatment, or severity.
Human ; Tetanus ; Magnesium Sulfate ; Diazepam
2.Molecular mechanism of magnesium alloy promoting macrophage M2 polarization through modulation of PI3K/AKT signaling pathway for tendon-bone healing in rotator cuff injury repair.
Xianhao SHENG ; Wen ZHANG ; Shoulong SONG ; Fei ZHANG ; Baoxiang ZHANG ; Xiaoying TIAN ; Wentao XIONG ; Yingguang ZHU ; Yuxin XIE ; Zi'ang LI ; Lili TAN ; Qiang ZHANG ; Yan WANG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(2):174-186
OBJECTIVE:
To evaluate the effect of biodegradable magnesium alloy materials in promoting tendon-bone healing during rotator cuff tear repair and to investigate their potential underlying biological mechanisms.
METHODS:
Forty-eight 8-week-old Sprague Dawley rats were taken and randomly divided into groups A, B, and C. Rotator cuff tear models were created and repaired using magnesium alloy sutures in group A and Vicryl Plus 4-0 absorbable sutures in group B, while only subcutaneous incisions and sutures were performed in group C. Organ samples of groups A and B were taken for HE staining at 1 and 2 weeks after operation to evaluate the safety of magnesium alloy, and specimens from the supraspinatus tendon and proximal humerus were harvested at 2, 4, 8, and 12 weeks after operation. The specimens were observed macroscopically at 4 and 12 weeks after operation. Biomechanical tests were performed at 4, 8, and 12 weeks to test the ultimate load and stiffness of the healing sites in groups A and B. At 2, 4, and 12 weeks, the specimens were subjected to the following tests: Micro-CT to evaluate the formation of bone tunnels in groups A and B, HE staining and Masson staining to observe the regeneration of fibrocartilage at the tendon-bone interface after decalcification and sectioning, and Goldner trichrome staining to evaluate the calcification. Immunohistochemical staining was performed to detect the expressions of angiogenic factors, including vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP-2), as well as osteogenic factors at the tendon-bone interface. Additionally, immunofluorescence staining was used to examine the expressions of Arginase 1 and Integrin beta-2 to assess M1 and M2 macrophage polarization at the tendon-bone interface. The role of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway in tendon-bone healing was further analyzed using real-time fluorescence quantitative PCR.
RESULTS:
Analysis of visceral sections revealed that magnesium ions released during the degradation of magnesium alloys did not cause significant toxic effects on organs such as the heart, liver, spleen, lungs, and kidneys, indicating good biosafety. Histological analysis further demonstrated that fibrocartilage regeneration at the tendon-bone interface in group A occurred earlier, and the amount of fibrocartilage was significantly greater compared to group B, suggesting a positive effect of magnesium alloy material on tendon-bone interface repair. Additionally, Micro-CT analysis results revealed that bone tunnel formation occurred more rapidly in group A compared to group B, further supporting the beneficial effect of magnesium alloy on bone healing. Biomechanical testing showed that the ultimate load in group A was consistently higher than in group B, and the stiffness of group A was also greater than that of group B at 4 weeks, indicating stronger tissue-carrying capacity following tendon-bone interface repair and highlighting the potential of magnesium alloy in enhancing tendon-bone healing. Immunohistochemical staining results indicated that the expressions of VEGF and BMP-2 were significantly upregulated during the early stages of healing, suggesting that magnesium alloy effectively promoted angiogenesis and bone formation, thereby accelerating the tendon-bone healing process. Immunofluorescence staining further revealed that magnesium ions exerted significant anti-inflammatory effects by regulating macrophage polarization, promoting their shift toward the M2 phenotype. Real-time fluorescence quantitative PCR results demonstrated that magnesium ions could facilitate tendon-bone healing by modulating the PI3K/AKT signaling pathway.
CONCLUSION
Biodegradable magnesium alloy material accelerated fibrocartilage regeneration and calcification at the tendon-bone interface in rat rotator cuff tear repair by regulating the PI3K/AKT signaling pathway, thereby significantly enhancing tendon-bone healing.
Animals
;
Rotator Cuff Injuries/metabolism*
;
Rats, Sprague-Dawley
;
Signal Transduction
;
Wound Healing/drug effects*
;
Alloys/pharmacology*
;
Rats
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Rotator Cuff/metabolism*
;
Macrophages/metabolism*
;
Magnesium/pharmacology*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Male
;
Biocompatible Materials
;
Bone Morphogenetic Protein 2/metabolism*
3.The causal association between circulating zinc, magnesium, and other minerals with autism spectrum disorder: a Mendelian randomization study.
Bing-Quan ZHU ; Sai-Jing CHEN ; Tian-Miao GU ; Si-Run JIN ; Dan YAO ; Shuang-Shuang ZHENG ; Jie SHAO
Chinese Journal of Contemporary Pediatrics 2025;27(9):1098-1104
OBJECTIVES:
To evaluate the causal association between circulating levels of zinc, magnesium, and other minerals and autism spectrum disorder (ASD).
METHODS:
A two-sample Mendelian randomization (MR) analysis was performed using summary statistics from large-scale genome-wide association studies of European populations, including 18 382 ASD cases and 27 969 controls. Genetic data for iron, calcium, and magnesium were obtained from the UK Biobank, and data for zinc and selenium were sourced from an Australian-British cohort. A total of 351 genetic instrumental variables were selected. Causal inference was performed using inverse-variance weighting as the primary analysis method. Sensitivity analyses were performed by Cochran's Q test and MR-PRESSO global test to assess the robustness of the findings.
RESULTS:
No statistically significant causal effect was observed for circulating zinc, magnesium, calcium, selenium, or iron levels on ASD risk (all P>0.05). The odds ratios and 95% confidence intervals from the inverse-variance weighting analysis were 0.934 (0.869-1.003) for zinc, 1.315 (0.971-1.850) for magnesium, 1.055 (0.960-1.159) for calcium, 1.015 (0.953-1.080) for selenium, and 0.946 (0.687-1.303) for iron. Sensitivity analysis revealed significant heterogeneity in the causal association between circulating calcium and ASD (P=0.006), while the effect estimate remained stable after MR-PRESSO correction (P=0.487). The causal effect estimates for the remaining minerals demonstrated good robustness.
CONCLUSIONS
This study did not find significant evidence supporting a causal association between circulating zinc, magnesium, calcium, selenium, or iron levels and ASD risk, providing important clues for the etiology of ASD and precision nutritional interventions.
Humans
;
Mendelian Randomization Analysis
;
Autism Spectrum Disorder/genetics*
;
Magnesium/blood*
;
Zinc/blood*
;
Minerals/blood*
;
Genome-Wide Association Study
;
Selenium/blood*
4.Biocompatibility of 3D printed biodegradable WE43 magnesium alloy scaffolds and treatment of bone defects.
Journal of Peking University(Health Sciences) 2025;57(2):309-316
OBJECTIVE:
To investigate the biocompatibility of porous WE43 magnesium alloy scaffolds manufactured by 3D printing technology and to observe its effect in treating femoral defects in New Zealand white rabbits.
METHODS:
In vitro cytotoxicity test was performed using bone marrow mesenchymal stem cells from Sprague Dawley (S-D) rats. According to the different culture media, the cells were divided into 100% extract group, 50% extract group, 10% extract group and control group. After culturing for 1, 3 and 7 days, the cell activity of each group was determined by cell counting kit-8 (CCK-8). In the in vivo experiment, 3.0-3.5 kg New Zealand white rabbits were randomly divided into three groups: Experimental group, bone cement group and blank group, with 9 rabbits in each group. Each rabbit underwent surgery on the left lateral femoral condyle, and a bone defect with a diameter of 5 mm and a depth of 6 mm was created using a bone drill. The experimental group was implanted with WE43 magnesium alloy scaffolds, the bone cement group was implanted with calcium sulfate bone cement, and the blank group was not implanted. Then 4, 8 and 12 weeks after surgery, 3 rabbits in each group were euthanized by carbon dioxide anesthesia, and the femur and important internal organs were sampled. Micro-computed tomography (Micro-CT) scanning was performed on the left lateral femoral condyle. Sections of important internal organs were prepared and stained with hematoxylin-eosin (HE). Hard tissue sections were made from the left lateral femoral condyle and stained with methylene blue acid fuchsin and observed under a microscope.
RESULTS:
In the cytotoxicity test, the cell survival rate in the 100% extract group was higher than that in the control group (140.56% vs. 100.00%, P < 0.05) on 1 day of culture; there was no statistically significant difference (P>0.05) in cell survival rate among the groups on 3 days of culture; the cell survival rate in the 100% extract group was lower than that in the control group (68.64% vs. 100.00%, P < 0.05) on 7 days of culture. Micro-CT scanning in the in vivo experiment found that most of the scaffolds in the experimental group had been degraded in 4 weeks, with very few high-density scaffolds remaining. In 12 weeks, there was no obvious stent outline. In 4 weeks, a certain amount of gas was generated around the WE43 magnesium alloy scaffold, and the gas was significantly reduced from 8 to 12 weeks. Hard tissue sections showed that a certain amount of extracellular matrix and osteoid were generated around the scaffolds in the experimental group in 4 weeks. In the bone cement group, most of the calcium sulfate bone cement had been degraded. In 8 weeks, the osteoid around the scaffold and its degradation products in the experimental group increased significantly. In 12 weeks, new bone was in contact with the scaffold around the scaffold in the experimental group. There was less new bone in the bone cement group and the blank group.
CONCLUSION
The porous WE43 magnesium alloy scaffold fabricated by 3D printing process has good biocompatibility and good osteogenic properties, and has the potential to become a new material for repairing bone defects.
Animals
;
Rabbits
;
Printing, Three-Dimensional
;
Alloys/chemistry*
;
Tissue Scaffolds/chemistry*
;
Magnesium/chemistry*
;
Rats, Sprague-Dawley
;
Biocompatible Materials
;
Mesenchymal Stem Cells/cytology*
;
Femur/surgery*
;
Rats
;
Absorbable Implants
;
Male
;
Bone Regeneration
;
Tissue Engineering/methods*
;
Cells, Cultured
5.Latest research progress of rare earth-magnesium alloys in orthopedics.
Zhengming SUN ; Kun ZUO ; Xinke ZHU ; Hao YUE ; Zhengchao GAO
Journal of Southern Medical University 2025;45(2):437-442
Due to their good properties of elastic modulus, degradability and ability to promote bone repair, magnesium alloys have become a research hotspot in research of orthopedic implants. Nevertheless, most of the biomedical magnesium alloys currently available fail to meet the requirements in orthopedics because of their rapid degradation after implantation. Rare earth-magnesium alloys possess excellent corrosion resistance and are expected to become important materials as clinical orthopedic implants. This review summarizes the recent progress in studies of the physiological functions of rare earth elements, the effects of supplementation of rare earth elements on biomechanical properties and the in vitro and in vivo biocompatibility of magnesium alloys, and their contribution to tendon-bone healing, addressing also the current clinical orthopedic applications of different rare earth-magnesium alloys, challenges, and future strategies for improving these alloys.
Alloys/chemistry*
;
Magnesium/chemistry*
;
Metals, Rare Earth/chemistry*
;
Humans
;
Biocompatible Materials
;
Prostheses and Implants
6.Magnesium promotes vascularization and osseointegration in diabetic states.
Linfeng LIU ; Feiyu WANG ; Wei SONG ; Danting ZHANG ; Weimin LIN ; Qi YIN ; Qian WANG ; Hanwen LI ; Quan YUAN ; Shiwen ZHANG
International Journal of Oral Science 2024;16(1):10-10
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues. Magnesium has been proved to promote bone healing under normal conditions. Here, we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status. We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised, with significantly decreased angiogenesis. We then developed Mg-coating implants with hydrothermal synthesis. These implants successfully improved the vascularization and osseointegration in diabetic status. Mechanically, Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1 (Keap1) and the nucleation of nuclear factor erythroid 2-related factor 2 (Nrf2) by up-regulating the expression of sestrin 2 (SESN2) in endothelial cells, thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia. Altogether, our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
Mice
;
Animals
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Magnesium/metabolism*
;
Osseointegration
;
Diabetes Mellitus, Experimental/metabolism*
;
Endothelial Cells/metabolism*
;
NF-E2-Related Factor 2/metabolism*
7.Association of serum magnesium and distal symmetric peripheral neuropathy among Filipino patients with Type 2 Diabetes Mellitus
Marion B. Sarigumba ; Andrea Marie M. Oliva ; Ma. Jocelyn C. Isidro
Philippine Journal of Internal Medicine 2024;62(1):283-290
Objective:
This study aims to determine the association of serum magnesium with distal symmetric peripheral
neuropathy among persons with type 2 diabetes mellitus (DM).
Methodology:
A cross-sectional analytical study among adult Filipinos with Type 2 DM. Logistic regression was used to
determine the association of serum magnesium with DSPN diagnosed by the Michigan Neuropathy Screening Instrument.
The null hypothesis was rejected at 0.05α-level of significance.
Results:
The average serum magnesium levels were similar between those with versus without DSPN (2.06 ± 0.32 vs 2.05
± 0.23, p = 0.873); the same was seen for corrected magnesium. There is insufficient evidence to demonstrate a significant
statistical difference between those with and without DSPN in relation to glycemic control (HbA1c and FBS). Likewise, there
is no significant statistical correlation between serum magnesium levels with HbA1c, FBS, BMI, or duration of diabetes.
Conclusion
This present study could not demonstrate any association between DSPN and serum magnesium, even after
adjusting for age, sex, and comorbidity.
Magnesium
;
Diabetic Neuropathies
8.Progress in research and development of biodegradable metallic vascular stents.
Yan YANG ; Zhenfeng ZHANG ; Junwei WANG ; Keyun FU ; Dongyang LI ; Hao HE ; Chang SHU
Journal of Central South University(Medical Sciences) 2024;49(11):1861-1868
Vascular stents are an essential tool in cardiovascular interventional therapy, and their demand is growing with the increasing incidence of cardiovascular diseases. Compared with permanent stents, which are prone to in-stent restenosis, and drug-eluting stents, which may cause late stent thrombosis, biodegradable stents offer advantages. After providing early radial support to prevent elastic recoil, biodegradable stents gradually degrade, allowing the vessel to regain its natural physiological contractility and undergo positive remodeling. A review of the current mainstream biodegradable metal stents, magnesium-based, iron-based, and zinc-based alloys, shows promising findings in both preclinical and clinical research. Magnesium-based stents exhibit good operability and low thrombosis rates, but their limitations include rapid degradation, hydrogen evolution, and significant pH changes in the microenvironment. Iron-based stents demonstrate excellent mechanical strength, formability, biocompatibility, and hemocompatibility, but their slow corrosion rate hampers broader clinical application; accelerating degradation remains key. Zinc-based alloys have a moderate degradation rate but relatively low mechanical strength; enhancing stent strength by alloying with other elements is the main improvement direction for zinc-based stents.
Humans
;
Absorbable Implants
;
Stents
;
Alloys/chemistry*
;
Magnesium/chemistry*
;
Biocompatible Materials/chemistry*
;
Zinc/chemistry*
;
Drug-Eluting Stents
;
Iron/chemistry*
;
Metals/chemistry*
9.Efficacy and safety of magnesium sulfate in the treatment of adult patients with acute severe asthma: a Meta-analysis.
Zhimei ZHONG ; Zengrui WANG ; Sheng QI ; Chaoqian LI ; Xia YANG
Chinese Critical Care Medicine 2024;36(12):1256-1260
OBJECTIVE:
To evaluate the efficacy and safety of magnesium sulfate in the treatment of acute severe asthma in adults.
METHODS:
Literature searches were conducted on PubMed, Cochrane, CNKI, VIP and Wanfang databases to screen randomized controlled trial (RCT) of magnesium sulfate in the treatment of acute severe asthma in adults, starting from the establishment of the database and ending on May 22, 2024. The control group received conventional treatment. The observation group was given intravenous magnesium sulfate on the basis of routine treatment. The outcome indexes included total effective rate, peak expiratory flow (PEF), forced expiratory volume in one second (FEV1), forced vital capacity (FVC) and other pulmonary function indexes, and incidence of adverse reactions. The selection of relevant literature, the collection of data needed for the study and the risk assessment of bias in the included study were all conducted independently by 2 researchers. Stata 12.0 software was used for Meta-analysis, and funnel plot was used to evaluate publication bias.
RESULTS:
Sixteen RCT studies with a total of 2 601 patients were included. Meta-analysis results showed that the total effective rate in the observation group was significantly higher than that in the control group [risk ratio (RR) = 1.11, 95% confidence interval (95%CI) was 1.03-1.20, P = 0.008]. In pulmonary function examination, PEF [weighted mean difference (WMD) = 0.70, 95%CI was 0.24-1.15, P = 0.003], FEV1 (WMD = 0.48, 95%CI was 0.29-0.68, P = 0.000) and FVC (WMD = 0.72, 95%CI was 0.47-0.97, P = 0.000) were significantly better than those in the control group. There was no significantly difference in the incidence of adverse reactions between the two groups (RR = 0.51, 95%CI was 0.17-1.55, P = 0.419). The funnel plot was drawn for the total effective rate, which showed that each study presented a symmetrical distribution, and the Begg's test (Z = 1.31, P = 0.189) and Egger's test (t = 1.18, P = 0.261) were combined to consider the small possibility of publication bias.
CONCLUSIONS
Current evidence shows that the use of magnesium sulfate in the treatment of acute severe asthma in adults increases the total response rate and improves lung function without increasing the incidence of adverse reactions. Due to the limited number and quality of included studies, the above conclusions need to be verified by more high-quality studies high-quality studies.
Humans
;
Magnesium Sulfate/administration & dosage*
;
Asthma/drug therapy*
;
Adult
;
Randomized Controlled Trials as Topic
;
Forced Expiratory Volume
;
Peak Expiratory Flow Rate/drug effects*
;
Treatment Outcome
10.Analysis of CNNM2 gene variant in a child with Hypomagnesemia, seizures, and mental retardation syndrome.
Lin WANG ; Hongwei ZHANG ; Junxia LUO ; Fang QI ; Yong LIU ; Kaihui ZHANG ; Zaifen GAO
Chinese Journal of Medical Genetics 2023;40(8):1004-1008
OBJECTIVE:
To explore the genetic etiology of a child with Hypomagnesemia, epilepsy and mental retardation syndrome (HSMR).
METHODS:
A child who was admitted to the Children's Hospital of Shandong University on July 9, 2021 due to repeated convulsions for 2 months was selected as the study subject. Clinical data of the child was collected. Peripheral blood samples of the child and his pedigree members were collected for the extraction of genomic DNA. Whole exome sequencing was carried out, and candidate variant was verified by Sanger sequencing and bioinformatic analysis.
RESULTS:
The child, a 1-year-and-7-month-old male, had presented with epilepsy and global developmental delay. Serological testing revealed that he has low serum magnesium. Genetic testing showed that the child has harbored a heterozygous c.1448delT (p.Val483GlyfsTer29) variant of the CNNM2 gene, which was de novo in origin. The variant has caused substitution of the Valine at position 483 by Glycine and formation of a termination codon after 29 amino acids at downstream. As predicted by Swiss-Model online software, the variant may alter the protein structure, resulting in a truncation. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the c.1448delT (p.Val483GlyfsTer29) was predicted as a pathogenic variant (PVS1+PS2+PM2_Supporting+PP4).
CONCLUSION
The heterozygous c.1448delT variant of the CNNM2 gene probably underlay the HSMR in this child. Above finding has enriched the phenotype-genotype spectrum of the CNNM2 gene.
Humans
;
Male
;
Cation Transport Proteins
;
Computational Biology
;
Ethnicity
;
Intellectual Disability/genetics*
;
Magnesium
;
Mutation
;
Seizures/genetics*
;
Infant


Result Analysis
Print
Save
E-mail