1.Single-Cell Mapping of Brain Myeloid Cell Subsets Reveals Key Transcriptomic Changes Favoring Neuroplasticity after Ischemic Stroke.
Fangxi LIU ; Xi CHENG ; Chuansheng ZHAO ; Xiaoqian ZHANG ; Chang LIU ; Shanshan ZHONG ; Zhouyang LIU ; Xinyu LIN ; Wei QIU ; Xiuchun ZHANG
Neuroscience Bulletin 2024;40(1):65-78
Interactions between brain-resident and peripheral infiltrated immune cells are thought to contribute to neuroplasticity after cerebral ischemia. However, conventional bulk sequencing makes it challenging to depict this complex immune network. Using single-cell RNA sequencing, we mapped compositional and transcriptional features of peri-infarct immune cells. Microglia were the predominant cell type in the peri-infarct region, displaying a more diverse activation pattern than the typical pro- and anti-inflammatory state, with axon tract-associated microglia (ATMs) being associated with neuronal regeneration. Trajectory inference suggested that infiltrated monocyte-derived macrophages (MDMs) exhibited a gradual fate trajectory transition to activated MDMs. Inter-cellular crosstalk between MDMs and microglia orchestrated anti-inflammatory and repair-promoting microglia phenotypes and promoted post-stroke neurogenesis, with SOX2 and related Akt/CREB signaling as the underlying mechanisms. This description of the brain's immune landscape and its relationship with neurogenesis provides new insight into promoting neural repair by regulating neuroinflammatory responses.
Humans
;
Ischemic Stroke
;
Brain/metabolism*
;
Macrophages
;
Brain Ischemia/metabolism*
;
Microglia/metabolism*
;
Gene Expression Profiling
;
Anti-Inflammatory Agents
;
Neuronal Plasticity/physiology*
;
Infarction/metabolism*
2.Research progress on the effect of mitochondrial network remodeling on macrophages.
Lianlian ZHU ; Xiangmin KONG ; Wei ZHU
Chinese Journal of Cellular and Molecular Immunology 2023;39(7):656-662
Remodeling of the mitochondrial network is an important process in the maintenance of cellular homeostasis and is closely related to mitochondrial function. Interactions between the biogenesis of new mitochondria and the clearance of damaged mitochondria (mitophagy) is an important manifestation of mitochondrial network remodeling. Mitochondrial fission and fusion act as a bridge between biogenesis and mitophagy. In recent years, the importance of these processes has been described in a variety of tissues and cell types and under a variety of conditions. For example, robust remodeling of the mitochondrial network has been reported during the polarization and effector function of macrophages. Previous studies have also revealed the important role of mitochondrial morphological structure and metabolic changes in regulating the function of macrophages. Therefore, the processes that regulate remodeling of the mitochondrial network also play a crucial role in the immune response of macrophages. In this paper, we focus on the molecular mechanisms of mitochondrial regeneration, fission, fusion, and mitophagy in the process of mitochondrial network remodeling, and integrate these mechanisms to investigate their biological roles in macrophage polarization, inflammasome activation, and efferocytosis.
Mitochondria
;
Mitophagy
;
Homeostasis/physiology*
;
Phagocytosis
;
Macrophages/metabolism*
3.Regulation and influence of mitochondria on macrophages during hepatitis B virus infection.
Meng HONG ; Qiu Xian ZHENG ; Zhi CHEN
Chinese Journal of Hepatology 2023;31(6):649-652
Hepatitis B virus (HBV) infection is an important public health concern, as approximately 3.5% of the world's population is currently chronically infected. Chronic HBV infection is the primary cause of cirrhosis, hepatocellular carcinoma, and deaths related to liver disease globally. Studies have found that in HBV infection, viruses can directly or indirectly regulate mitochondrial energy metabolism, oxidative stress, respiratory chain metabolites, and autophagy, thereby altering macrophage activation status, differentiation types, and related cytokine secretion type and quantity regulations. Therefore, mitochondria have become an important signal source for macrophages to participate in the body's immune system during HBV infection, providing a basis for mitochondria to be considered as a potential therapeutic target for chronic hepatitis B.
Humans
;
Hepatitis B virus/physiology*
;
Hepatitis B/complications*
;
Hepatitis B, Chronic/complications*
;
Mitochondria
;
Liver Neoplasms
;
Macrophages
4.CD301b+ macrophage: the new booster for activating bone regeneration in periodontitis treatment.
Can WANG ; Qin ZHAO ; Chen CHEN ; Jiaojiao LI ; Jing ZHANG ; Shuyuan QU ; Hua TANG ; Hao ZENG ; Yufeng ZHANG
International Journal of Oral Science 2023;15(1):19-19
Periodontal bone regeneration is a major challenge in the treatment of periodontitis. Currently the main obstacle is the difficulty of restoring the regenerative vitality of periodontal osteoblast lineages suppressed by inflammation, via conventional treatment. CD301b+ macrophages were recently identified as a subpopulation that is characteristic of a regenerative environment, but their role in periodontal bone repair has not been reported. The current study indicates that CD301b+ macrophages may be a constituent component of periodontal bone repair, and that they are devoted to bone formation in the resolving phase of periodontitis. Transcriptome sequencing suggested that CD301b+ macrophages could positively regulate osteogenesis-related processes. In vitro, CD301b+ macrophages could be induced by interleukin 4 (IL-4) unless proinflammatory cytokines such as interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) were present. Mechanistically, CD301b+ macrophages promoted osteoblast differentiation via insulin-like growth factor 1 (IGF-1)/thymoma viral proto-oncogene 1 (Akt)/mammalian target of rapamycin (mTOR) signaling. An osteogenic inducible nano-capsule (OINC) consisting of a gold nanocage loaded with IL-4 as the "core" and mouse neutrophil membrane as the "shell" was designed. When injected into periodontal tissue, OINCs first absorbed proinflammatory cytokines in inflamed periodontal tissue, then released IL-4 controlled by far-red irradiation. These events collectively promoted CD301b+ macrophage enrichment, which further boosted periodontal bone regeneration. The current study highlights the osteoinductive role of CD301b+ macrophages, and suggests a CD301b+ macrophage-targeted induction strategy based on biomimetic nano-capsules for improved therapeutic efficacy, which may also provide a potential therapeutic target and strategy for other inflammatory bone diseases.
Animals
;
Mice
;
Bone Regeneration
;
Cytokines/metabolism*
;
Interleukin-4/therapeutic use*
;
Macrophages/physiology*
;
Mammals
;
Osteogenesis
;
Periodontitis/drug therapy*
5.Research Progress on the Mechanism of Macrophages Regulating Hematopoiesis in Bone Marrow Microenvironment--Review.
Yu-Han WANG ; Yue LI ; Shuang DING
Journal of Experimental Hematology 2023;31(4):1242-1246
Bone marrow macrophage is an important component of bone marrow microenvironment, which is closely related to hematopoietic regulation and hematopoietic stem cell transplantation(HSCT). Recent studies have shown that bone marrow macrophage is an important part of hematopoietic stem cell niche, which can help regulate the mobilization and function of hematopoietic stem/progenitor cells. After HSCT, the microenvironment of bone marrow is damaged and a large number of macrophages infiltrate into the bone marrow. Regulating the macrophage-related signal pathways can promote the recovery of hematopoiesis and the reconstruction of hematopoietic function. Co-culture of macrophages and hematopoietic stem cells (HSC) in vitro significantly increased the number of HSCs and their ability of clone formation, which suggests that macrophages play an important role in the regulation of hematopoiesis in the hematopoietic microenvironment of bone marrow. This paper reviews the recent research progress on the role of macrophages in bone marrow hematopoietic microenvironment.
Humans
;
Bone Marrow/metabolism*
;
Hematopoietic Stem Cells/physiology*
;
Hematopoiesis/physiology*
;
Stem Cell Niche
;
Macrophages/metabolism*
6.The role of macrophage polarization and interaction with renal tubular epithelial cells in ischemia-reperfusion induced acute kidney injury.
Wei WANG ; Wen-Li SAI ; Bin YANG
Acta Physiologica Sinica 2022;74(1):28-38
Acute kidney injury (AKI) is a common critical clinical disease characterized by a sharp decline of renal function. Ischemia-reperfusion (IR) is one of the main causes of AKI. The mortality of AKI remains high due to the lack of early diagnosis and cause specific treatment. IR rapidly initiates innate immune responses, activates complement and innate immune cells, releasing a large number of injury-related molecules such as high mobility group box-1 (HMGB1), inflammatory mediators such as caspase-3, and then recruits immune inflammatory cells including M1 macrophages (Mϕ) to the microenvironment of injury, causing apoptosis and necrosis of renal tubular epithelial cells (TECs). Dead cells and associated inflammation further activate the adaptive immune system, which not only aggravates tissue damage, but also initiates M2 Mϕ participated inflammatory clearance, tissue repair and regeneration. Mϕ, professional phagocytes, and TECs, semi-professional phagocytes, can phagocytose around damaged cells including apoptotic Mϕ and TECs, which are key innate immune cells to regulate the outcome of injury, repair or fibrosis. In recent years, it has been found that erythropoietin (EPO) not only binds to the homodimeric receptor (EPOR)2 to induce erythropoiesis, but also binds to the heterodimeric receptor EPOR/βcR, also known as innate repair receptor, which plays renoprotective roles. Properdin is the only positive regulator in the complement activation of alternative pathway. It also can effectively identify and bind to early apoptotic T cells and facilitate phagocytic clearing by Mϕ through a non-complement activation-dependent mechanism. Our previous studies have shown that Mϕ and TECs associated with EPO and its receptors and properdin are involved in IR injury and repair, but the underlying mechanism needs to be further explored. As an important carrier of cell-to-cell signal transmission, exosomes participate in the occurrence and development of a variety of renal diseases. The role of exosomes involved in the interaction between Mϕ and TECs in IR-induced AKI is not fully defined. Based on the available results in the role of Mϕ and TECs in renal IR-induced AKI, this review discussed the role of Mϕ polarization and interaction with TECs in renal IR injury, as well as the participation of EPO and its receptors, properdin and exosomes.
Acute Kidney Injury/metabolism*
;
Animals
;
Epithelial Cells/metabolism*
;
Humans
;
Ischemia/metabolism*
;
Kidney
;
Macrophages/physiology*
;
Mice
;
Mice, Inbred C57BL
;
Reperfusion
;
Reperfusion Injury
7.Effects of electroacupuncture pretreatment on cardiac function and immune inflammatory response in mice with acute myocardial ischemia.
Tao ZHANG ; Yu CHEN ; Rong-Huang LI ; Ya-Ling WANG ; Shu-Ping FU ; Ye YANG ; Bin XU ; Sheng-Feng LU
Chinese Acupuncture & Moxibustion 2020;40(6):635-639
OBJECTIVE:
To observe the effects of electroacupuncture (EA) pretreatment on the cardiac ejection fraction (EF), the number of macrophages in spleen and heart, and the expression of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) and interleukin-1β (IL-1β) in myocardium in mice with acute myocardial ischemia, and to explore the possible mechanism of EA pretreatment on promoting myocardial protection.
METHODS:
A total of 30 male C57BL/6J mice were randomly divided into a control group, a model group and an EA pretreatment group, 10 rats in each group. The acute myocardial ischemia model was established by ligating the left anterior descending branch of the coronary artery in the model group and EA pretreatment group, while threading but no ligating at left anterior descending branch of the coronary artery was applied in the control group. In the EA pretreatment group, mice were intervented with EA at bilateral "Neiguan" (PC 6), disperse-dense wave, frequency of 2 Hz/15 Hz, intensity of 2 mA; each EA treatment last for 20 min, once a day, and 3-day treatment was given before model establishment. The EF value was evaluated by ultrasonic cardiogram; the number of macrophages in spleen and heart was measured by flow cytometry; the expression level of NLRP3 and IL-1β in myocardium was measured by Western blot.
RESULTS:
Compared with the control group, the EF value was decreased in the model group (<0.001), the number of macrophages in the heart and spleen was increased (<0.001), and the expression level of NLRP3 and IL-1β in the myocardium was increased (<0.001, <0.01). Compared with the model group, the EF value was increased in the EA pretreatment group (<0.01), the number of macrophages in the heart and spleen was decreased (<0.01), and the expression level of NLRP3 and IL-1β in the myocardium was decreased (<0.01, <0.05).
CONCLUSION
EA pretreatment could reduce the number of macrophages in spleen and heart, down-regulate the expression of NLRP3 and IL-1β in myocardial tissue in mice with acute myocardial ischemia, which could relieve the local inflammatory response and achieve the myocardial protective effect.
Acupuncture Points
;
Animals
;
Electroacupuncture
;
Heart
;
physiology
;
Inflammation
;
immunology
;
Interleukin-1beta
;
metabolism
;
Macrophages
;
cytology
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Myocardial Ischemia
;
immunology
;
therapy
;
Myocardium
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
metabolism
;
Random Allocation
;
Spleen
8.Characteristic comparison of mouse primary macrophages cultured in L929 cell conditioned medium.
Wei WANG ; Yi QIN ; Yaru WANG ; Jiejie ZOU ; Jing CHEN ; Jinwu CHEN ; Yan ZHANG ; Ming GENG ; Zhongdong XU ; Min DAI ; Lilong PAN
Chinese Journal of Biotechnology 2020;36(7):1431-1439
The purpose of this study is to provide a culture for mouse bone marrow-derived macrophages (BMDM) and peritoneal macrophages (PM) and to characterize their molecular and cellular biology. The cell number and purity from the primary culture were assessed by cell counter and flow cytometry, respectively. Morphological features were evaluated by inverted microscope. Phagocytosis by macrophages was detected by the neutral red dye uptake assay. Phenotypic markers were analyzed by real-time fluorescent quantitative PCR. Our results show that the cell number was much higher from culture of BMDM than PM, while there was no significant difference regarding the percentage of F4/80+CD11b+ cells (98.30%±0.53% vs. 94.83%±1.42%; P>0.05). The proliferation rate of BMDM was significantly higher than PM in the presence of L929 cell conditioned medium, by using CCK-8 assay. However, PM appeared to adhere to the flask wall and extend earlier than BMDM. The phagocytosis capability of un-stimulated BMDM was significantly higher than PM, as well as lipopolysaccharide (LPS)-stimulated BMDM, except the BMDM stimulated by low dose LPS (0.1 μg/mL). Furthermore, Tnfα expression was significantly higher in un-stimulated BMDM than PM, while Arg1 and Ym1 mRNA expression were significantly lower than PM. The expression difference was persistent if stimulated by LPS+IFN-γ or IL-4. Our data indicate that bone marrow can get larger amounts of macrophages than peritoneal cavity. However, it should be aware that the molecular and cellular characteristics were different between these two culture systems.
Animals
;
Bone Marrow Cells
;
physiology
;
Cells, Cultured
;
Culture Media, Conditioned
;
Lipopolysaccharides
;
metabolism
;
Macrophages
;
classification
;
physiology
;
Mice
;
Phagocytosis
9.Research advances on adrenergic receptor signaling involved in disease microenvironment through regulation of macrophages.
Ji-Ju WANG ; Da-Jin LI ; Mei-Rong DU
Acta Physiologica Sinica 2020;72(2):227-234
Adrenergic receptor (AR), one of the key receptors for nervous system, plays an important role in the immune microenvironment and the progression of many diseases. In recent years, the regulation of ARs and its signal on macrophages has become a research hotspot. Researchers found that ARs could exert different regulatory functions on macrophages in different microenvironments, which in turn affects occurrence and development of diseases such as tumor, heart failure, obesity, acute injury, infection and pregnancy-related diseases. This review summarizes the expression and functional regulation of ARs on macrophages, and the role of ARs in microenvironment of related diseases, which might provide new ideas for the treatments.
Disease
;
Humans
;
Macrophages
;
physiology
;
Receptors, Adrenergic
;
physiology
;
Signal Transduction
10.MicroRNAs in tumor immunity: functional regulation in tumor-associated macrophages.
Chong CHEN ; Jia-Ming LIU ; Yun-Ping LUO
Journal of Zhejiang University. Science. B 2020;21(1):12-28
Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME) and are critical for cancer initiation and progression. MicroRNAs (miRNAs) could notably influence the phenotype of TAMs through various targets and signal pathways during cancer progression due to their post-transcriptional regulation. In this review, we discuss mainly the regulatory function of miRNAs on macrophage differentiation, functional polarization, and cellular crosstalk. Firstly, during the generation process, miRNAs take part in the differentiation from myeloid cells to mature macrophages, and this maturation process directly influences their recruitment into the TME, attracted by tumor cells. Secondly, macrophages in the TME can be either tumor-promoting or tumor-suppressing, depending on their functional polarization. Large numbers of miRNAs can influence the polarization of macrophages, which is crucial for tumor progression, including tumor cell invasion, intravasation, extravasation, and premetastatic site formation. Thirdly, crosstalk between tumor cells and macrophages is essential for TME formation and tumor progression, and miRNAs can be the mediator of communication in different forms, especially when encapsulated in microvesicles or exosomes. We also assess the potential value of certain macrophage-related miRNAs (MRMs) as diagnostic and prognostic markers, and discuss the possible development of MRM-based therapies.
Cell Communication
;
Cell Differentiation
;
Cell Polarity
;
Humans
;
Macrophages/physiology*
;
MicroRNAs/physiology*
;
Myeloid Cells/cytology*
;
Neoplasms/therapy*
;
Tumor Microenvironment

Result Analysis
Print
Save
E-mail