1.Role and mechanism of macrophage-mediated osteoimmune in osteonecrosis of the femoral head.
Yushun WANG ; Jianrui ZHENG ; Yuhong LUO ; Lei CHEN ; Zhigang PENG ; Gensen YE ; Deli WANG ; Zhen TAN
Chinese Journal of Reparative and Reconstructive Surgery 2024;38(1):119-124
OBJECTIVE:
To summarize the research progress on the role of macrophage-mediated osteoimmune in osteonecrosis of the femoral head (ONFH) and its mechanisms.
METHODS:
Recent studies on the role and mechanism of macrophage-mediated osteoimmune in ONFH at home and abroad were extensively reviewed. The classification and function of macrophages were summarized, the osteoimmune regulation of macrophages on chronic inflammation in ONFH was summarized, and the pathophysiological mechanism of osteonecrosis was expounded from the perspective of osteoimmune, which provided new ideas for the treatment of ONFH.
RESULTS:
Macrophages are important immune cells involved in inflammatory response, which can differentiate into classically activated type (M1) and alternatively activated type (M2), and play specific functions to participate in and regulate the physiological and pathological processes of the body. Studies have shown that bone immune imbalance mediated by macrophages can cause local chronic inflammation and lead to the occurrence and development of ONFH. Therefore, regulating macrophage polarization is a potential ONFH treatment strategy. In chronic inflammatory microenvironment, inhibiting macrophage polarization to M1 can promote local inflammatory dissipation and effectively delay the progression of ONFH; regulating macrophage polarization to M2 can build a local osteoimmune microenvironment conducive to bone repair, which is helpful to necrotic tissue regeneration and repair to a certain extent.
CONCLUSION
At present, it has been confirmed that macrophage-mediated chronic inflammatory immune microenvironment is an important mechanism for the occurrence and development of ONFH. It is necessary to study the subtypes of immune cells in ONFH, the interaction between immune cells and macrophages, and the interaction between various immune cells and macrophages, which is beneficial to the development of potential therapeutic methods for ONFH.
Humans
;
Femur Head/pathology*
;
Osteonecrosis/therapy*
;
Macrophages/pathology*
;
Inflammation
;
Femur Head Necrosis/pathology*
2.Progressin Tumor-Associated Macrophages in the Treatment of Pancreatic Cancer.
Ke ZHANG ; Ya-Han QIN ; Jie SHEN ; Meng-Yu ZHANG ; Mei-Yu PENG
Acta Academiae Medicinae Sinicae 2023;45(3):471-478
Pancreatic cancer is one of the digestive system tumors with a high degree of malignancy,and most of the patients are diagnosed in advanced stages.Because of limited available therapies,the mortality of this disease remains high.Tumor-associated macrophages(TAM),the main immune cells in the tumor microenvironment,are involved in the regulation of the occurrence and development of pancreatic cancer.Specifically,TAM are involved in the proliferation,invasion,immune escape,and chemoresistance of pancreatic cancer cells,demonstrating potential in the targeted therapy of pancreatic cancer.In this paper,we summarize the TAM-based therapies including consuming TAM,reprogramming TAM,dynamic imaging of TAM with nanoprobes,and regulating the phagocytic ability of TAM for pancreatic cancer,aiming to provide a theoretical basis for developing new therapies for pancreatic cancer.
Humans
;
Tumor-Associated Macrophages
;
Macrophages
;
Pancreatic Neoplasms/pathology*
;
Tumor Microenvironment
3.Prevention and treatment of lung cancer by regulating tumor-associated macrophages with traditional Chinese medicine.
Yun-Feng LIAN ; Hui-Tong YANG ; Ying SUN ; He ZHANG ; Xue MEI ; Long FENG ; Jin-Chan XIA
China Journal of Chinese Materia Medica 2023;48(8):2000-2009
Lung cancer is one of the common malignant tumors in the world, and its incidence and mortality is increasing year by year. Interactions between tumor cells and immune cells in the tumor microenvironment(TME) affect tumor proliferation, infiltration, and metastasis. Tumor-associated macrophages(TAMs) are prominent components of TME, and they have dual regulation effects on malignant progression of lung cancer. The number, activity, and function of M2 macrophages are related to the poor prognosis of lung cancer, and M2 macrophages participate in tumor angiogenesis and immune escape. It has been proved that traditional Chinese medicines(TCMs) and their active ingredients can enhance the antitumor effects, reduce the toxicity of chemotherapy and radiotherapy, and prolong the survival rates of patients with cancer. This paper summarized the role of TAMs in the lung cancer initiation and progression, explored the molecular mechanism of TCM in regulating the recruitment, polarization phenotype, activity, and expression of related factors and proteins of TAMs, and discussed related signal pathways in the prevention and treatment of lung cancer based on the TCM theory of "reinforcing healthy qi and eliminating pathogen". This paper is expected to provide new ideas for the immunotherapy of targeted TAMs.
Humans
;
Tumor-Associated Macrophages/pathology*
;
Medicine, Chinese Traditional
;
Lung Neoplasms/genetics*
;
Macrophages
;
Immunotherapy
;
Tumor Microenvironment
4.Research Progress on the Role of Tumor-Associated Macrophages in Multiple Myeloma --Review.
Ping-Ping ZHANG ; Bing-Zong LI ; Ying-Hua GENG ; Feng ZHANG ; Yan-Li YANG
Journal of Experimental Hematology 2023;31(2):589-592
Bone marrow microenvironment is a highly complex environment surrounding tumor, which plays an important role in the survival, proliferation, drug resistance and migration of multiple myeloma (MM) cells. As an important cellular component in tumor microenvironment, tumor-associated macrophages(TAM) has attracted attention due to its key role in tumor progression and drug resistance. Targeting TAM has shown potential therapeutic value in cancer treatment. In order to clarify the role of macrophages in MM progression, it is necessary to understand the differentiation of TAM and its characteristics of promoting MM. This paper reviews the research progress on how TAM is programmed in MM and the mechanism of TAM promoting tumor development and drug resistance.
Humans
;
Multiple Myeloma/pathology*
;
Tumor-Associated Macrophages
;
Macrophages/pathology*
;
Cell Differentiation
;
Tumor Microenvironment
5.Infiltration and significance of M1 macrophage in breast cancer: an analysis of METABRIC database and clinical validation.
Hui Zi LEI ; Pei YUAN ; Jia JIA ; Chang Yuan GUO ; Bing Ning WANG ; Lei GUO ; Jian Ming YING
Chinese Journal of Oncology 2023;45(5):410-414
Objective: To investigate the differences of immune microenvironment between stage T1N3 and stage T3N0 breast cancer patients and explore the relationship between M1 macrophage infiltration and lymph node metastasis in breast cancer. Methods: Clinical information and RNA-sequencing (RNA-Seq) expression data of stage T1N3 (n=9) and stage T3N0 (n=11) breast cancer patients were extracted from Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) databases. Using CIBERSORT, the proportions of 22 types of immune cells were calculated, and then the differences of immune cell infiltration between stage T1N3 and T3N0 patients were compared. From 2011 to 2022, pathologic specimens were collected from breast cancer patients who underwent curative resection at the Cancer Hospital, Chinese Academy of Medical Sciences, including 77 at stage T1N3 and 58 at stage T3N0.The METABRIC database analysis results were verified by examining the density of M1 macrophages in tissues using dual-staining immunohistochemistry. Results: METABRIC data analysis showed M1 macrophage was the highest proportion, 15.85% in stage T1N3 breast cancer; M2 macrophage was the highest proportion, 13.07% in stage T3N0 breast cancer.M1 macrophage proportions were statistically different between patients with stage T1N3 and stage T3N0 (P=0.010). The dual-staining immunohistochemistry analysis of breast cancer tissues showed M1 macrophage density (median) of 62.0 and 38.0 cells/mm(2) for stage T1N3 and T3N0, respectively. The difference was statistically significant (P=0.002). Conclusion: The density of M1 macrophages is notably higher in stage T1N3 patients and is associated with lymph node metastasis.
Humans
;
Female
;
Breast Neoplasms/pathology*
;
Lymphatic Metastasis/pathology*
;
Macrophages/metabolism*
;
Tumor Microenvironment
6.Macrophage heterogeneity role in NAFLD and NASH disease progression.
Tao YANG ; Xiao WANG ; Long Feng JIANG ; Jun LI
Chinese Journal of Hepatology 2023;31(7):770-775
Nonalcoholic fatty liver disease (NAFLD) is a type of metabolic stress liver injury that is closely associated with insulin resistance and genetic susceptibility. The continuum of liver injury in NAFLD can range from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH) and even lead to cirrhosis and liver cancer. The pathogenesis of NAFLD is complicated. Pro-inflammatory cytokines, lipotoxicity, and gut bacterial metabolites play a key role in activating liver-resident macrophages (Kupffer cells, KCs) and recruiting circulating monocyte-derived macrophages (MoDMacs) to deposit fat in the liver. With the application of single-cell RNA-sequencing, significant heterogeneity in hepatic macrophages has been revealed, suggesting that KCs and MoDMacs located in the liver exert distinct functions in regulating liver inflammation and NASH progression. This study focuses on the role of macrophage heterogeneity in the development and occurrence of NAFLD and NASH, in view of the fact that innate immunity plays a key role in the development of NAFLD.
Humans
;
Non-alcoholic Fatty Liver Disease/pathology*
;
Liver/pathology*
;
Macrophages/metabolism*
;
Liver Cirrhosis/complications*
;
Disease Progression
7.Vitamin D receptor (VDR) mediates the quiescence of activated hepatic stellate cells (aHSCs) by regulating M2 macrophage exosomal smooth muscle cell-associated protein 5 (SMAP-5).
Xuwentai LIU ; Yue WU ; Yanyi LI ; Kaiming LI ; Siyuan HOU ; Ming DING ; Jingmin TAN ; Zijing ZHU ; Yingqi TANG ; Yuming LIU ; Qianhui SUN ; Cong WANG ; Can ZHANG
Journal of Zhejiang University. Science. B 2023;24(3):248-261
An effective therapeutic regimen for hepatic fibrosis requires a deep understanding of the pathogenesis mechanism. Hepatic fibrosis is characterized by activated hepatic stellate cells (aHSCs) with an excessive production of extracellular matrix. Although promoted activation of HSCs by M2 macrophages has been demonstrated, the molecular mechanism involved remains ambiguous. Herein, we propose that the vitamin D receptor (VDR) involved in macrophage polarization may regulate the communication between macrophages and HSCs by changing the functions of exosomes. We confirm that activating the VDR can inhibit the effect of M2 macrophages on HSC activation. The exosomes derived from M2 macrophages can promote HSC activation, while stimulating VDR alters the protein profiles and reverses their roles in M2 macrophage exosomes. Smooth muscle cell-associated protein 5 (SMAP-5) was found to be the key effector protein in promoting HSC activation by regulating autophagy flux. Building on these results, we show that a combined treatment of a VDR agonist and a macrophage-targeted exosomal secretion inhibitor achieves an excellent anti-hepatic fibrosis effect. In this study, we aim to elucidate the association between VDR and macrophages in HSC activation. The results contribute to our understanding of the pathogenesis mechanism of hepatic fibrosis, and provide potential therapeutic targets for its treatment.
Humans
;
Hepatic Stellate Cells/pathology*
;
Receptors, Calcitriol
;
Liver Cirrhosis/pathology*
;
Macrophages/metabolism*
8.Mechanosensitive Ion Channel TMEM63A Gangs Up with Local Macrophages to Modulate Chronic Post-amputation Pain.
Shaofeng PU ; Yiyang WU ; Fang TONG ; Wan-Jie DU ; Shuai LIU ; Huan YANG ; Chen ZHANG ; Bin ZHOU ; Ziyue CHEN ; Xiaomeng ZHOU ; Qingjian HAN ; Dongping DU
Neuroscience Bulletin 2023;39(2):177-193
Post-amputation pain causes great suffering to amputees, but still no effective drugs are available due to its elusive mechanisms. Our previous clinical studies found that surgical removal or radiofrequency treatment of the neuroma at the axotomized nerve stump effectively relieves the phantom pain afflicting patients after amputation. This indicated an essential role of the residual nerve stump in the formation of chronic post-amputation pain (CPAP). However, the molecular mechanism by which the residual nerve stump or neuroma is involved and regulates CPAP is still a mystery. In this study, we found that nociceptors expressed the mechanosensitive ion channel TMEM63A and macrophages infiltrated into the dorsal root ganglion (DRG) neurons worked synergistically to promote CPAP. Histology and qRT-PCR showed that TMEM63A was mainly expressed in mechanical pain-producing non-peptidergic nociceptors in the DRG, and the expression of TMEM63A increased significantly both in the neuroma from amputated patients and the DRG in a mouse model of tibial nerve transfer (TNT). Behavioral tests showed that the mechanical, heat, and cold sensitivity were not affected in the Tmem63a-/- mice in the naïve state, suggesting the basal pain was not affected. In the inflammatory and post-amputation state, the mechanical allodynia but not the heat hyperalgesia or cold allodynia was significantly decreased in Tmem63a-/- mice. Further study showed that there was severe neuronal injury and macrophage infiltration in the DRG, tibial nerve, residual stump, and the neuroma-like structure of the TNT mouse model, Consistent with this, expression of the pro-inflammatory cytokines TNF-α, IL-6, and IL-1β all increased dramatically in the DRG. Interestingly, the deletion of Tmem63a significantly reduced the macrophage infiltration in the DRG but not in the tibial nerve stump. Furthermore, the ablation of macrophages significantly reduced both the expression of Tmem63a and the mechanical allodynia in the TNT mouse model, indicating an interaction between nociceptors and macrophages, and that these two factors gang up together to regulate the formation of CPAP. This provides a new insight into the mechanisms underlying CPAP and potential drug targets its treatment.
Animals
;
Mice
;
Amputation, Surgical
;
Chronic Pain/pathology*
;
Disease Models, Animal
;
Ganglia, Spinal/pathology*
;
Hyperalgesia/etiology*
;
Ion Channels/metabolism*
;
Macrophages
;
Neuroma/pathology*
9.Effects of radiation therapy on tumor microenvironment: an updated review.
Zewen ZHANG ; Yuanhao PENG ; Xin PENG ; Desheng XIAO ; Ying SHI ; Yongguang TAO
Chinese Medical Journal 2023;136(23):2802-2811
Cancer is a major threat to human health and causes death worldwide. Research on the role of radiotherapy (RT) in the treatment of cancer is progressing; however, RT not only causes fatal DNA damage to tumor cells, but also affects the interactions between tumor cells and different components of the tumor microenvironment (TME), including immune cells, fibroblasts, macrophages, extracellular matrix, and some soluble products. Some cancer cells can survive radiation and have shown strong resistance to radiation through interaction with the TME. Currently, the complex relationships between the tumor cells and cellular components that play major roles in various TMEs are poorly understood. This review explores the relationship between RT and cell-cell communication in the TME from the perspective of immunity and hypoxia and aims to identify new RT biomarkers and treatment methods in lung cancer to improve the current status of unstable RT effect and provide a theoretical basis for further lung cancer RT sensitization research in the future.
Humans
;
Neoplasms/pathology*
;
Lung Neoplasms/complications*
;
Fibroblasts/pathology*
;
Biomarkers
;
Macrophages/pathology*
;
Hypoxia
;
Tumor Microenvironment
10.Liver macrophages show an immunotolerance phenotype in nonalcoholic fatty liver combined with Porphyromonas gingivalis-lipopolysaccharide infection.
Lijia GUO ; Yitong LIU ; Yingyi CHEN ; Junji XU ; Yi LIU
West China Journal of Stomatology 2023;41(4):385-394
OBJECTIVES:
This study aimed to explore the functions and potential regulatory targets of local macrophages in nonalcoholic fatty liver combined with Porphyromonas gingivalis (P. gingivalis)infection.
METHODS:
Single-cell RNA sequencing was used to analyze the phenotypes and functional changes in various cells in the liver tissue of nonalcoholic steatohepatitis (NASH) mice fed with P. gingivalis. Real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay, and immunofluorescence staining were applied to observe the inflammation and expression levels of macrophage antigen presenting functional markers in the NASH liver. Oil red staining was performed to observe the accumulation of local adipose tissue in the NASH liver. Results were verified through RT-PCRand RNA sequencing using P. gingivalis-lipopolysaccharide treated mouse peritoneal macrophages.
RESULTS:
In comparison with healthy livers with Kupffer cells, the NASH liver combined with P. gingivalis infection-related macrophages showed significant heterogeneity. C1qb, C1qc, Mafb, Apoe, and Cd14 were highly expressed, but Cd209a, H2-Aa, H2-Ab1, and H2-DMb1, which are related to the antigen presentation function, were weakly expressed. Further in vivo and in vitro investigations indicated that the activation and infiltration of these macrophages may be due to local P. gingivalis-lipopolysaccharide accumulation.
CONCLUSIONS
P. gingivalis-lipopolysaccharide induces a local macrophage immunotolerance phenotype in nonalcoholic fatty liver, which may be the key mechanism of periodontitis pathogen infection that promotes NASH inflammation and pathogenesis. This study further clarifies the dysfunction and regulatory mechanisms of macrophages in the pathogenesis of P. gingivalis-infected NASH, thereby providing potential therapeutic targets for its clinical treatment.
Mice
;
Animals
;
Non-alcoholic Fatty Liver Disease/pathology*
;
Kupffer Cells/pathology*
;
Porphyromonas gingivalis
;
Lipopolysaccharides/metabolism*
;
Inflammation/pathology*
;
Macrophages/metabolism*
;
Mice, Inbred C57BL

Result Analysis
Print
Save
E-mail