1.Astragaloside IV regulates Snail1 lactylation and acetylation to mediate macrophage polarization and improve myocardial infarction.
Shaopeng CHEN ; Rudian KANG ; Xinbao HONG ; Yilong LIU
Chinese Journal of Cellular and Molecular Immunology 2025;41(4):289-299
Objective To investigate the impact of Astragaloside-IV (AS-IV) on the progression of myocardial infarction (MI) through macrophage-dependent mechanisms by regulating Snail1 lactylation and acetylation, as well as the transforming growth factor β (TGF-β) pathway. Methods Oxygen glucose deprivation (OGD) was used to establish an in vitro myocardial ischemia model in rat cardiomyocytes (H9c2), which were then treated with AS-IV. Cell viability was assessed using CCK-8, apoptosis was evaluated by flow cytometry, and LDH levels were measured to assess cellular damage. RAW246.7 cells were treated with LPS, and lactate levels in the supernatant were measured using ELISA, while expression of macrophage phenotype markers was evaluated using Western blot. RAW246.7 cell-conditioned medium (CM) was co-cultured with H9c2 cells to assess the protective effects of AS-IV on macrophage CM-mediated H9c2 damage. RAW246.7 cells were induced to differentiate into M1-like macrophages using LPS (100 ng/mL) + IFN-γ (20 ng/mL), and Snail1 was overexpressed in M1 macrophages. Transfected M1 macrophage CM was co-cultured with H9c2 cells to validate the mechanisms of AS-IV in MI. An MI rat model was established by ligation of the left anterior descending coronary artery (LAD), and was treated with AS-IV. Cardiac function, myocardial cell apoptosis, and cardiac tissue pathology were studied using echocardiography, TUNEL, and HE staining, respectively. Results Compared to the OGD group, AS-IV treatment promoted cell viability, reduced apoptosis and decreased LDH release. LPS upregulated lactate levels in the supernatant of RAW246.7 cell cultures and induced polarization of RAW246.7 cells to the M1 phenotype. AS-IV attenuated the damaging effects of RAW246.7 cell CM on H9c2 cells . Overexpression of Snail1 in M1 macrophages weakened the protective effects of AS-IV on H9c2 cells . In vivo study, results showed that, compared to the MI group, AS-IV treatment reduced lactate levels in the hearts of MI rats, improved cardiac function and myocardial injury and attenuated myocardial cell apoptosis. Conclusion AS-IV inhibits TGF-β pathway activation through the suppression of Snail1 lactylation and acetylation in a macrophage-dependent manner, thereby mitigating myocardial cell damage following MI.
Animals
;
Myocardial Infarction/drug therapy*
;
Rats
;
Snail Family Transcription Factors/metabolism*
;
Macrophages/cytology*
;
Myocytes, Cardiac/metabolism*
;
Triterpenes/pharmacology*
;
Saponins/pharmacology*
;
Acetylation/drug effects*
;
Apoptosis/drug effects*
;
Mice
;
Cell Line
;
RAW 264.7 Cells
;
Transforming Growth Factor beta/metabolism*
2.Ecliptasaponin A ameliorates DSS-induced colitis in mice by suppressing M1 macrophage polarization via inhibiting the JAK2/STAT3 pathway.
Minzhu NIU ; Lixia YIN ; Tong QIAO ; Lin YIN ; Keni ZHANG ; Jianguo HU ; Chuanwang SONG ; Zhijun GENG ; Jing LI
Journal of Southern Medical University 2025;45(6):1297-1306
OBJECTIVES:
To investigate the effect of ecliptasaponin A (ESA) for alleviating dextran sulfate sodium (DSS)-induced inflammatory bowel disease (IBD) in mice and the underlying mechanism.
METHODS:
Twenty-four male C57BL/6 mice (8-10 weeks old) were equally randomized into control group, DSS-induced IBD model group, and DSS+ESA (50 mg/kg) treatment group. Disease activity index (DAI), colon length and spleen index of the mice were measured, and intestinal pathology was examined with HE staining. The expressions of inflammatory mediators (TNF-α, IL-6, and iNOS) in the colon mucosa were detected using ELISA and RT-qPCR, and intestinal barrier integrity was assessed using AB-PAS staining and by detecting ZO-1 and claudin-1 expressions using immunofluorescence staining and Western blotting. In cultured RAW264.7 macrophages, the effects of treatment with 50 μmol/L ESA, alone or in combination with 20 μmol/L RO8191 (a JAK2/STAT3 pathway activator), on M1 polarization of the cells induced by LPS and IFN-γ stimulation and expressions of JAK2/STAT3 pathway proteins were analyzed using flow cytometry and Western blotting.
RESULTS:
In the mouse models of DSS-induced IBD, ESA treatment significantly alleviated body weight loss and colon shortening, reduced DAI, spleen index and histological scores, and ameliorated inflammatory cell infiltration in the colon tissue. ESA treatment also suppressed TNF‑α, IL-6 and iNOS expressions, protected the goblet cells and the integrity of the mucus and mechanical barriers, and upregulated the expressions of ZO-1 and claudin-1. ESA treatment obviously decreased CD86+ M1 polarization in the mesenteric lymph nodes of IBD mice and in LPS and IFN-γ-induced RAW264.7 cells, and significantly reduced p-JAK2 and p-STAT3 expressions in both the mouse models and RAW264.7 cells. Treatment with RO8191 caused reactivation of JAK2/STAT3 and strongly attenuated the inhibitory effect of ESA on CD86+ polarization in RAW264.7 cells.
CONCLUSIONS
ESA alleviates DSS-induced colitis in mice by suppressing JAK2/STAT3-mediated M1 macrophage polarization and mitigating inflammation-driven intestinal barrier damage.
Animals
;
Mice
;
Janus Kinase 2/metabolism*
;
STAT3 Transcription Factor/metabolism*
;
Mice, Inbred C57BL
;
Male
;
Dextran Sulfate
;
Macrophages/cytology*
;
Colitis/metabolism*
;
Saponins/pharmacology*
;
Signal Transduction/drug effects*
;
RAW 264.7 Cells
;
Triterpenes/pharmacology*
;
Interleukin-6/metabolism*
3.Mechanism of chrysophanol in inhibiting ox-LDL-induced macrophage foaminess through NF-κB/HMGB1-PI3K/Akt/mTOR pathway.
Chun-Lin WU ; Ya-Nan HU ; Yi-Qiang LIU ; Hui LI ; Quan WEN
China Journal of Chinese Materia Medica 2024;49(23):6439-6449
The aim of this study was to investigate the underlying mechanism of chrysophanol(Chr) in reducing inflammation and foam cell formation induced by oxidized low-density lipoprotein(ox-LDL) and to investigate the targets and pathways related to effects of Chr on coronary atherosclerosis, providing a theoretical basis for the development of new clinical drugs. RAW264.7 macrophages were cultured in vitro, and after determining the appropriate concentrations of Chr and ox-LDL for treating RAW264.7 macrophages using a cell counting kit-8(CCK-8), the macrophages were treated with different concentrations of Chr(10, 15 μmol·L~(-1)) and ox-LDL(with or without 80 mg·mL~(-1)) for 24 h. RAW264.7 macrophages were divided into four groups: control group, model group(80 mg·mL~(-1) ox-LDL), treatment group(80 mg·mL~(-1) ox-LDL+10 μmol·L~(-1) Chr), and treatment group(80 mg·mL~(-1) ox-LDL+15 μmol·L~(-1) Chr). Lipid accumulation in each group was detected by oil red O staining. CD36 expression was analyzed by flow cytometry. Western blot was used to detect the expression of scavenger receptor class A1(SR-A1), scavenger receptor class B type Ⅰ(SR-B1), autophagy-related protein 5(Atg5), Beclin-1, autophagy adaptor protein p62(P62), the ratio of microtubule-associated protein light chain 3(LC3)Ⅱ to LC3Ⅰ(LC3Ⅱ/LC3Ⅰ), nuclear factor kappa B P65(NF-κB P65), inhibitor of κB kinase β(IKKβ), nuclear factor of κB inhibitor(IκB), high mobility group box protein 1(HMGB1), phosphatidylinositol 3-kinase(PI3K), protein kinase B(Akt), and phosphorylated mammalian target of rapamycin(mTOR). Real-time quantitative polymerase chain reaction(RT-qPCR) was used to detect the mRNA expression levels of ATP-binding cassette transporter A1(ABCA1), ATP-binding cassette transporter G1(ABCG1), interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), HMGB1, inducible nitric oxide synthase(iNOS), arginase 1(Arg1), macrophage galactose-type lectin-1(Mgl-1), and NF-κB P65. Immunofluorescence analysis was performed to determine the localization of HMGB1 in RAW264.7 cells in each group. The autophagy inhibitor 3-methyladenine(3-MA) was added as a control for reverse validation, and the RAW264.7 macrophages were divided into four groups again: control group, model group(80 mg·mL~(-1) ox-LDL), treatment group(80 mg·mL~(-1) ox-LDL + 15 μmol·L~(-1) Chr), and inhibitor group(80 mg·mL~(-1) ox-LDL+15 μmol·L~(-1) Chr+3-MA). The results showed that Chr effectively reduced foam cell formation by regulating the expression levels of SR-A1, ABCA1, ABCG1, the LC3Ⅱ/LC3Ⅰ ratio, Atg5, Beclin-1, and p62, and inhibited the NF-κB/HMGB1-PI3K/Akt/mTOR signaling pathway. Moreover, the inhibitory effects of Chr on autophagy and the NF-κB/HMGB1-PI3K/Akt/mTOR pathway were reversed by the autophagy inhibitor 3-MA. In conclusion, Chr exhibits therapeutic potential for the treatment of atherosclerosis by inducing autophagy and modulating the NF-κB/HMGB1 and PI3K/Akt/mTOR pathways to inhibit the formation of macrophage inflammatory foam cells.
Animals
;
Lipoproteins, LDL/metabolism*
;
Mice
;
TOR Serine-Threonine Kinases/genetics*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Macrophages/cytology*
;
RAW 264.7 Cells
;
Proto-Oncogene Proteins c-akt/genetics*
;
Signal Transduction/drug effects*
;
NF-kappa B/genetics*
;
Anthraquinones/pharmacology*
;
Foam Cells/cytology*
;
HMGB1 Protein/genetics*
;
Humans
4.Role of miR-663 in acute renal graft rejection: an in vitro study.
Xiao-You LIU ; Jie ZHANG ; Jie LIANG ; Yong-Guang LIU ; Jian-Min HU ; Zheng-Yao JIANG ; Ze-Feng GUO
Journal of Southern Medical University 2016;36(3):419-422
OBJECTIVETo compare the serum miR-663 levels in renal transplant patients with and without acute rejection (AR) and explore the role of miR-663 acute renal graft rejection.
METHODSReal time-PCR was used to determine serum miR-663 levels in renal transplant recipients with and without AR. MTT assay and Annexin V-FITC assay were employed to examine the viability and apoptosis of human renal glomerular endothelial cells (HRGEC) treated with a miR-663 mimic or a miR-663 inhibitor, and ELISA was performed to detect the expression of inflammation-related cytokines including IL-6, IFN-γ, CCL-2 and TNF-α in the cells. Transwell assay was used to examine the effect of miR-663 mimic and miR-663 inhibitor on the chemotactic capability of macrophages.
RESULTSSerum miR-663 level was significantly higher in renal transplant recipients with AR than in those without AR. The miR-663 mimic significantly inhibited the viability of HRGECs and increase the cell apoptosis rate, while miR-663 inhibitor suppressed the cell apoptosis. The miR-663 mimic increased the expression levels of inflammation-related cytokines and enhanced the chemotactic capability of macrophages.
CONCLUSIONmiR-663 might play important roles in acute renal graft rejection and may become a therapeutic target for treating AR.
Apoptosis ; Cells, Cultured ; Cytokines ; metabolism ; Endothelial Cells ; cytology ; Graft Rejection ; blood ; Humans ; Kidney Glomerulus ; cytology ; Kidney Transplantation ; Macrophages ; cytology ; drug effects ; MicroRNAs ; blood
5.Media of rat macrophage NR8383 cells with prostaglandins E2-induced VEGF over-expression promotes migration and tube formation of human umbilical vein endothelial cells.
Mian LIU ; Yi GONG ; Jin-Yan WEI ; Duo XIE ; Jing WANG ; Yan-Hong YU ; Song QUAN
Journal of Southern Medical University 2016;36(7):936-940
OBJECTIVETo investigate the effect of prostaglandins E2 (PGE2) in enhancing vascular endothelial growth factor (VEGF) expression in a rat macrophage cell line and the effect of the media from PGE2-inuced rat macrophages on angiogenetic ability of human umbilical vein endothelial cells (HUVECs) in vitro.
METHODSWestern blotting and qPCR were employed to investigate the expressions of VEGF protein and mRNAs in rat macrophage cell line NR8383 stimulated by PGE2 in the presence or absence of EP2 receptor inhibitor (AH6809) and EP4 receptor inhibitor (AH23848). Conditioned supernatants were obtained from different NR8383 subsets to stimulate HUVECs, and the tube formation ability and migration of the HUVECs were assessed with Transwell assay.
RESULTSPGE2 stimulation significantly enhanced the expression of VEGF protein and mRNAs in NR8383 cells in a dose-dependent manner. The supernatants from NR8383 cells stimulated by PGE2 significantly enhanced tube formation ability of HUVECs (P<0.05) and promoted the cell migration. Such effects of PGE2 were blocked by the application of AH6809 and AH23848.
CONCLUSIONPGE2 can dose-dependently increase VEGF expression in NR8383 cells, and the supernatants derived from PGE2-stimulated NR8383 cells can induce HUVEC migration and accelerate the growth of tube like structures. PGE2 are essential to corpus luteum formation by stimulating macrophages to induce angiogenesis through EP2/EP4.
Animals ; Cell Line ; Cell Movement ; Cells, Cultured ; Culture Media, Conditioned ; pharmacology ; Dinoprostone ; pharmacology ; Human Umbilical Vein Endothelial Cells ; cytology ; drug effects ; Humans ; Macrophages ; chemistry ; Neovascularization, Pathologic ; RNA, Messenger ; Rats ; Receptors, Prostaglandin E, EP2 Subtype ; metabolism ; Receptors, Prostaglandin E, EP4 Subtype ; metabolism ; Vascular Endothelial Growth Factor A ; Xanthones ; pharmacology
6.Pentoxifylline inhibits liver fibrosis via hedgehog signaling pathway.
Hui LI ; Juan HUA ; Chun-Xia GUO ; Wei-Xian WANG ; Bao-Ju WANG ; Dong-Liang YANG ; Ping WEI ; Yin-Ping LU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):372-376
Infection of schistosomiasis japonica may eventually lead to liver fibrosis, and no effective antifibrotic therapies are available but liver transplantation. Hedgehog (HH) signaling pathway has been involved in the process and is a promising target for treating liver fibrosis. This study aimed to explore the effects of pentoxifylline (PTX) on liver fibrosis induced by schistosoma japonicum infection by inhibiting the HH signaling pathway. Phorbol12-myristate13-acetate (PMA) was used to induce human acute mononuclear leukemia cells THP-1 to differentiate into macrophages. The THP-1-derived macrophages were stimulated by soluble egg antigen (SEA), and the culture supernatants were collected for detection of activation of macrophages. Cell Counting Kit-8 (CCK-8) was used to detect the cytotoxicity of the culture supernatant and PTX on the LX-2 cells. The LX-2 cells were administered with activated culture supernatant from macrophages and(or) PTX to detect the transforming growth factor-β gene expression. The mRNA expression of shh and gli-1, key parts in HH signaling pathway, was detected. The mRNA expression of shh and gli-1 was increased in LX-2 cells treated with activated macrophages-derived culture supernatant, suggesting HH signaling pathway may play a key role in the activation process of hepatic stellate cells (HSCs). The expression of these genes decreased in LX-2 cells co-cultured with both activated macrophages-derived culture supernatant and PTX, indicating PTX could suppress the activation process of HSCs. In conclusion, these data provide evidence that PTX prevents liver fibrogenesis in vitro by the suppression of HH signaling pathway.
Animals
;
Antigens, Helminth
;
isolation & purification
;
pharmacology
;
Cell Culture Techniques
;
Cell Differentiation
;
drug effects
;
Cell Line
;
Culture Media, Conditioned
;
chemistry
;
pharmacology
;
Gene Expression Regulation
;
Hedgehog Proteins
;
agonists
;
antagonists & inhibitors
;
genetics
;
immunology
;
Hepatic Stellate Cells
;
cytology
;
drug effects
;
metabolism
;
Humans
;
Liver Cirrhosis
;
metabolism
;
parasitology
;
prevention & control
;
Macrophage Activation
;
drug effects
;
Macrophages
;
cytology
;
drug effects
;
immunology
;
Models, Biological
;
Monocytes
;
cytology
;
drug effects
;
metabolism
;
Pentoxifylline
;
pharmacology
;
Phosphodiesterase Inhibitors
;
pharmacology
;
RNA, Messenger
;
genetics
;
immunology
;
Schistosoma japonicum
;
chemistry
;
Signal Transduction
;
Tetradecanoylphorbol Acetate
;
pharmacology
;
Zinc Finger Protein GLI1
;
genetics
;
immunology
;
Zygote
;
chemistry
7.Roles of epidermal growth factor receptor signaling pathway in silicon dioxide-induced epithelial-mesenchymal transition in human pulmonary epithelial cells.
Wenwen SONG ; Zhengfu ZHANG ; Hua XIAO ; Shaojie SUN ; Hua ZHANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2015;33(9):663-667
OBJECTIVETo investigate the effect of silicon dioxide (SiO₂) on the expression of E-cadherin, α-smooth muscle actin (α-SMA), and transforming growth factor β₁(TGF-β₁) in human pulmonary epithelial cells (A549) with epithelial-mesenchymal transition (EMT), and to study the roles of epidermal growth factor receptor (EGFR) signaling pathway in SiO₂-induced EMT in A549 cells in vitro.
METHODSAlveolar macrophages (AMs) were stimulated with 50 µg/ml SiO₂for 3, 6, 12, 18, 24, or 36 h, and the supernatants were collected to measure the expression of TGF-β₁protein by ELISA. The AM supernatant in which TGF-β₁reached the highest expression (T=18 h) was used as AM-conditioned supernatant. A549 cells were cultured in AM-conditioned supernatant and stimulated with indicated doses of SiO₂(0, 50, 100, and 200 µg/ml) for 48 h. The cell morphological changes were observed using an inverted microscope. The cells were collected at different times, and the mRNA and protein expression levels of E-cadherin, α-SMA, and EGFR were measured by RT-PCR and immunocytofluorescence, respectively.
RESULTSAfter stimulation by SiO₂, the expression level of TGF-β₁protein at each time point was significantly higher in the presence of AM supernatants than in the absence of AM supernatants (P<0.05). With the action time, the expression level of TGF-β₁protein increased at first and then decreased, and the highest level was reached at 18 h. After exposure to SiO₂, A549 cells exhibited mesenchymal characteristics, such as a spindle shape, pseudopodia change, and fibroblast-like morphology, as observed by inverted microscope, especially in the 200 µg/ml group. With increased concentration of SiO₂, the mRNA and protein expression of E-cadherin was down-regulated gradually, especially in the 200 µg/ml group, whereas the mRNA and protein expression of α-SMA and EGFR was up-regulated gradually, especially in the 200 µg/m1 group. There were significant differences between the SiO₂-treated groups (50, 100, and 200 µg/ml SiO₂) and the control group (P<0.05).
CONCLUSIONAfter being stimulated by SiO₂in vitro, AMs have significantly increased expression level of TGF-β₁protein. The AM supernatant together with SiO₂can induce the transition of pulmonary epithelial cells to mesenchymal cells, and its mechanism may be related to the EGFR signaling pathway.
Actins ; metabolism ; Cadherins ; metabolism ; Cell Line, Tumor ; Epithelial Cells ; cytology ; metabolism ; Epithelial-Mesenchymal Transition ; drug effects ; Humans ; Lung ; cytology ; Macrophages, Alveolar ; metabolism ; Receptor, Epidermal Growth Factor ; metabolism ; Signal Transduction ; Silicon Dioxide ; pharmacology ; Transforming Growth Factor beta1 ; metabolism
8.Secondary metabolites from a deep-sea-derived actinomycete Micrococcus sp. R21.
Kun PENG ; Rui-qiang SU ; Gai-yun ZHANG ; Xuan-xuan CHENG ; Quan YANG ; Yong-hong LIU ; Xian-wen YANG
China Journal of Chinese Materia Medica 2015;40(12):2367-2371
To investigate cytotoxic secondary metabolites of Micrococcus sp. R21, an actinomycete isolated from a deep-sea sediment (-6 310 m; 142 degrees 19. 9' E, 10 degrees 54. 6' N) of the Western Pacific Ocean, column chromatography was introduced over silica gel, ODS, and Sephadex LH-20. As a result, eight compounds were obtained. By mainly detailed analysis of the NMR data, their structures were elucidated as cyclo(4-hydroxy-L-Pro-L-leu) (1), cyclo(L-Pro-L-Gly) (2), cyclo( L-Pro-L-Ala) (3), cyclo( D-Pro-L-Leu) (4), N-β-acetyltryptamine (5), 2-hydroxybenzoic acid (6), and phenylacetic acid (7). Compound 1 exhibited weak cytotoxic activity against RAW264. 7 cells with IC50 value of 9.1 μmol x L(-1).
Animals
;
Biological Factors
;
chemistry
;
isolation & purification
;
metabolism
;
pharmacology
;
Cell Survival
;
drug effects
;
Macrophages
;
cytology
;
drug effects
;
Magnetic Resonance Spectroscopy
;
Mass Spectrometry
;
Mice
;
Micrococcus
;
chemistry
;
genetics
;
isolation & purification
;
metabolism
;
Molecular Structure
;
Phylogeny
;
RAW 264.7 Cells
;
Seawater
;
microbiology
;
Secondary Metabolism
9.Total flavonoid from Glycyrrhizae Radix et Rhizoma and its ingredient isoliquiritigenin regulation M2 phenotype polarization of macrophages.
Yuan-lai WANG ; Xi TAN ; Xiao-lu YANG ; Xiao-yun LI ; Ka BIAN ; Dan-dan ZHANG
China Journal of Chinese Materia Medica 2015;40(22):4475-4481
To study the mechanisms of total flavonoid from Glycyrrhizae Radix et Rhizoma (TFGR) and its ingredient isoliquiritigenin (ISL) on their regulation of M2 phenotype polarization of macrophages. IL-4 (60 μg x L(-1)) induced RAW264.7 cells for 6 h to establish the M2 macrophage model. TFGR and ISL restrained breast cancer cells migration with the aid of M2 macrophages in vitro. TFGR and ISL inhibited gene and protein expression of Arg-1, up-regulated gene of HO-1 and protein expression of iNOS, enhanced the expression of microRNA 155 and its target gene SHIP1, meanwhile down-regulated.the phosphorylation of STAT3 and STAT6. So TFGR and ISL were the bioactive fraction and ingredient in Glycyrrhizae Radix et Rhizoma to reverse M2 phenotype macrophages polarization. TFGR and ISL inhibited the promotion of M2 macrophages to breast cancer cells migration in vitro, STAT signal pathways and miR155 were partly involved.
Animals
;
Cell Line, Tumor
;
Cell Movement
;
drug effects
;
Cell Polarity
;
drug effects
;
Chalcones
;
pharmacology
;
Flavonoids
;
pharmacology
;
Glycyrrhiza
;
chemistry
;
Interleukin-4
;
genetics
;
metabolism
;
Macrophages
;
cytology
;
drug effects
;
metabolism
;
Mice
;
RAW 264.7 Cells
;
Rhizome
;
chemistry
10.Atorvastatin inhibits macrophage-derived foam cell formation by suppressing the activation of PPARγ and NF-κB pathway.
Xiaofeng CHENG ; Xiaoyan LIU ; Lingkun SONG ; Yun HE ; Xiaoqing LI ; Hao ZHANG
Journal of Southern Medical University 2014;34(6):896-900
OBJECTIVETo evaluate whether atorvastatin inhibits oxidized low-density lipoproteins (Ox-LDL)-stimulated foam cell formation from THP-1 macrophages by regulating the activation of peroxisome proliferator-activated receptor γ (PPARγ) and nuclear factor-κB (NF-κB). Methods THP-1 macrophages were pretreated with 10, 20, or 40 µmol/L atorvastatin for 2 h, and after washing with PBS twice, the cells were incubated with 60 µg/ml of Ox-LDL for 48 h. The quantity of intracellular lipid of the cells was detected with Oil red O staining and enzymatic fluorometric method. The expression of the scavenger receptors of CD36 and SRA were analyzed with Western blotting. We also examined the effect of atorvastatin on adenosine triphosphate (ATP)-binding cassette transporter A1 (ABCA1) expression and the activation of PPARγ and p-iκB, and further assessed the capacity of the macrophages to bind to Dil-oxLDL.
RESULTSAtorvastatin potently inhibited ox-LDL-induced macrophage-derived foam cell formation, down-regulated the expression of CD36 and SRA, and up-regulated the expression of ABCA1. Atorvastatin markedly suppressed the activation of PPARγ and p-iκB in ox-LDL-stimulated THP-1 macrophages (P<0.05) and significantly decreased the Dil-oxLDL-binding capacity of the macrophages (P<0.05).
CONCLUSIONAtorvastatin as an effective anti-atherosclerosis agent can suppress the activation of PPARγ and p-iκB to reduce lipid accumulation in macrophages.
ATP Binding Cassette Transporter 1 ; metabolism ; Atorvastatin Calcium ; Cell Line ; Foam Cells ; cytology ; drug effects ; Heptanoic Acids ; pharmacology ; Humans ; I-kappa B Proteins ; metabolism ; Lipoproteins, LDL ; metabolism ; Macrophages ; cytology ; drug effects ; NF-kappa B ; metabolism ; PPAR gamma ; metabolism ; Pyrroles ; pharmacology ; Signal Transduction ; drug effects ; Transcriptional Activation ; Up-Regulation

Result Analysis
Print
Save
E-mail