1.Experimental study on Jianpi Qutan Formula regulating M1/M2 macrophage polarization to improve atherosclerosis.
Xiao-Meng HAN ; Yue LIU ; Yu ZHAO ; Mao-Sheng YU ; Mi TAN
China Journal of Chinese Materia Medica 2025;50(6):1610-1617
To investigate the mechanism of Jianpi Qutan Formula in regulating the balance between classically activated macrophages(M1) and alternatively activated macrophages(M2) in atherosclerotic plaques through phosphorylation and activation of the signal transducer and activator of transcription 6(STAT6), thereby reducing inflammation, increasing plaque stability, and exerting anti-atherosclerosis(AS) effects. An AS model was established by feeding apolipoprotein E(ApoE)~(-/-) mice with atherosclerotic chow for 8 weeks. The ApoE~(-/-) mice were randomly divided into a model group(Mod group), a Jianpi Qutan Formula group(JPQT group, 8.97 g·kg~(-1)), and a Atorvastatin Calcium Tablets group(ATO group, 1.3 mg·kg~(-1)) according to a random table method, with 10 mice in each group. Additionally, 10 male C57BL/6J mice of the same age, fed with a normal diet, were set as the control group(Con group). The JPQT and ATO groups received their respective treatments via oral gavage for 8 consecutive weeks, while the Con and Mod groups were administered an equivalent volume of saline. Body weight was continuously monitored, and after blood collection, total cholesterol(TC) and triglyceride(TG) levels in the serum of each group were compared. Hematoxylin-eosin(HE) staining and oil red O staining were used to observe plaque formation in aortic tissue. Enzyme-linked immunosorbent assay(ELISA) was employed to detect the expression levels of pro-inflammatory cytokines interleukin(IL)-6 and IL-12, as well as the anti-inflammatory cytokine IL-10. Immunofluorescence was used to detect the positive expression of aortic cluster of differentiation(CD)86 and CD206. Western blot analysis was conducted to detect the protein expression levels of aortic inducible nitric oxide synthase(iNOS), arginase 1(Arg1), STAT6, and p-STAT6. Compared to the Con group, the Mod group exhibited increased body weight and blood lipid levels, disordered aortic structure, significant AS plaque formation accompanied by extensive lipid deposition, and elevated serum levels of pro-inflammatory cytokines IL-6 and IL-12, as well as elevated CD86 and iNOS protein levels. In contrast, the serum levels of the anti-inflammatory cytokine IL-10, along with the protein expression levels of CD206, Arg1, and p-STAT6/STAT6, were reduced. Compared to the Mod group, the drug intervention groups showed improvements in body weight and lipid metabolism, with a more significant improvement in aortic structure, reduced lipid accumulation, decreased serum levels of IL-6 and IL-12, and lower CD86 and iNOS protein levels. Meanwhile, levels of IL-10, CD206, Arg1, and p-STAT6/STAT6 increased. Jianpi Qutan Formula improves AS by regulating the imbalance in M1/M2 macrophage polarization, and its mechanism is likely closely related to the activation of the STAT6 signaling pathway.
Animals
;
Atherosclerosis/metabolism*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Macrophages/cytology*
;
Mice, Inbred C57BL
;
STAT6 Transcription Factor/immunology*
;
Humans
;
Apolipoproteins E/genetics*
;
Interleukin-6/immunology*
2.Effect of mechanical stimuli on physicochemical properties of joint fluid in osteoarthritis.
Han YAO ; Aixian TIAN ; Jianxiong MA ; Xinlong MA
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(7):903-911
OBJECTIVE:
To analyze the differences in the effects of different mechanical stimuli on cells, cytokines, and proteins in synovial fluid of osteoarthritis joints, and to elucidate the indirect mechanism by which mechanical signals remodel the synovial fluid microenvironment through tissue cells.
METHODS:
Systematically integrate recent literature, focusing on the regulatory effects of different mechanical stimuli on the physicochemical properties of synovial fluid. Analyze the dynamic process by which mechanical stimuli regulate secretory and metabolic activities through tissue cells, thereby altering the physicochemical properties of cytokines and proteins.
RESULTS:
Appropriate mechanical stimuli activate mechanical signals in chondrocytes, macrophages, and synovial cells, thereby influencing cellular metabolic activities, including inhibiting the release of pro-inflammatory factors and promoting the secretion of anti-inflammatory factors, and regulating the expression of matrix and inflammation-related proteins such as cartilage oligomeric matrix protein, peptidoglycan recognition protein 4, and matrix metalloproteinases.
CONCLUSION
Mechanical stimuli act on tissue cells, indirectly reshaping the synovial fluid microenvironment through metabolic activities, thereby regulating the pathological process of osteoarthritis.
Humans
;
Osteoarthritis/physiopathology*
;
Synovial Fluid/chemistry*
;
Chondrocytes/metabolism*
;
Cytokines/metabolism*
;
Macrophages/metabolism*
;
Stress, Mechanical
;
Cartilage Oligomeric Matrix Protein/metabolism*
;
Matrix Metalloproteinases/metabolism*
;
Synovial Membrane/cytology*
3.Astragaloside IV regulates Snail1 lactylation and acetylation to mediate macrophage polarization and improve myocardial infarction.
Shaopeng CHEN ; Rudian KANG ; Xinbao HONG ; Yilong LIU
Chinese Journal of Cellular and Molecular Immunology 2025;41(4):289-299
Objective To investigate the impact of Astragaloside-IV (AS-IV) on the progression of myocardial infarction (MI) through macrophage-dependent mechanisms by regulating Snail1 lactylation and acetylation, as well as the transforming growth factor β (TGF-β) pathway. Methods Oxygen glucose deprivation (OGD) was used to establish an in vitro myocardial ischemia model in rat cardiomyocytes (H9c2), which were then treated with AS-IV. Cell viability was assessed using CCK-8, apoptosis was evaluated by flow cytometry, and LDH levels were measured to assess cellular damage. RAW246.7 cells were treated with LPS, and lactate levels in the supernatant were measured using ELISA, while expression of macrophage phenotype markers was evaluated using Western blot. RAW246.7 cell-conditioned medium (CM) was co-cultured with H9c2 cells to assess the protective effects of AS-IV on macrophage CM-mediated H9c2 damage. RAW246.7 cells were induced to differentiate into M1-like macrophages using LPS (100 ng/mL) + IFN-γ (20 ng/mL), and Snail1 was overexpressed in M1 macrophages. Transfected M1 macrophage CM was co-cultured with H9c2 cells to validate the mechanisms of AS-IV in MI. An MI rat model was established by ligation of the left anterior descending coronary artery (LAD), and was treated with AS-IV. Cardiac function, myocardial cell apoptosis, and cardiac tissue pathology were studied using echocardiography, TUNEL, and HE staining, respectively. Results Compared to the OGD group, AS-IV treatment promoted cell viability, reduced apoptosis and decreased LDH release. LPS upregulated lactate levels in the supernatant of RAW246.7 cell cultures and induced polarization of RAW246.7 cells to the M1 phenotype. AS-IV attenuated the damaging effects of RAW246.7 cell CM on H9c2 cells . Overexpression of Snail1 in M1 macrophages weakened the protective effects of AS-IV on H9c2 cells . In vivo study, results showed that, compared to the MI group, AS-IV treatment reduced lactate levels in the hearts of MI rats, improved cardiac function and myocardial injury and attenuated myocardial cell apoptosis. Conclusion AS-IV inhibits TGF-β pathway activation through the suppression of Snail1 lactylation and acetylation in a macrophage-dependent manner, thereby mitigating myocardial cell damage following MI.
Animals
;
Myocardial Infarction/drug therapy*
;
Rats
;
Snail Family Transcription Factors/metabolism*
;
Macrophages/cytology*
;
Myocytes, Cardiac/metabolism*
;
Triterpenes/pharmacology*
;
Saponins/pharmacology*
;
Acetylation/drug effects*
;
Apoptosis/drug effects*
;
Mice
;
Cell Line
;
RAW 264.7 Cells
;
Transforming Growth Factor beta/metabolism*
4.HAPLN1 secreted by synovial fibroblasts in rheumatoid arthritis promotes macrophage polarization towards the M1 phenotype.
Chenggen LUO ; Kun HUANG ; Xiaoli PAN ; Yong CHEN ; Yanjuan CHEN ; Yunting CHEN ; Mang HE ; Mei TIAN
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):413-419
Objective To investigate the effects of hyaluronic acid and proteoglycan-linked protein 1 (HAPLN1) secreted by synovial fibroblasts (FLS) on the polarization of macrophages (Mϕ) in rheumatoid arthritis (RA). Methods Human monocytic leukemia cells (THP-1) were differentiated into Mϕ, which were subsequently exposed to recombinant HAPLN1 (rHAPLN1). RA-FLS were transfected separately with HAPLN1 overexpression plasmid (HAPLN1OE) or small interfering RNA targeting HAPLN1 (si-HAPLN1), and then co-cultured with Mϕ to establish a co-culture model. The viability of Mϕ was assessed using the CCK-8 assay, and the proportions of pro-inflammatory M1-type and anti-inflammatory M2-type Mϕ were analyzed by flow cytometry. Additionally, the expression levels of inflammatory markers, including interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), and inducible nitric oxide synthase (iNOS), were quantified using quantitative real-time PCR and Western blot analysis. Results The viability of Mϕ was increased in the rHAPLN1 group compared to the control group. Furthermore, both the M1/Mϕ ratio and inflammatory factor levels were elevated in the rHAPLN1 and HAPLN1OE groups. In contrast, the si-HAPLN1 group exhibited a decrease in the M1/Mϕ ratio and inflammatory factor expression. Notably, the introduction of rHAPLN1 in rescue experiments further promoted Mϕ polarization towards the M1 phenotype. Conclusion HAPLN1, secreted by RA fibroblast-like synoviocytes (RA-FLS), enhances Mϕ polarization towards the M1 phenotype.
Humans
;
Arthritis, Rheumatoid/genetics*
;
Macrophages/immunology*
;
Fibroblasts/metabolism*
;
Phenotype
;
Extracellular Matrix Proteins/genetics*
;
Proteoglycans/genetics*
;
Synovial Membrane/cytology*
;
Tumor Necrosis Factor-alpha/genetics*
;
Interleukin-1beta/genetics*
;
Nitric Oxide Synthase Type II/genetics*
;
Cell Differentiation
;
Coculture Techniques
;
THP-1 Cells
5.Ubiquitin-specific peptidase 21 promotes M2 polarization of endometriotic macrophages by increasing FOXM1 stability.
Min DONG ; Min XU ; Derong FANG ; Yiyuan CHEN ; Mingzhe ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(7):603-610
Objective To explore the mechanism of ubiquitin specific peptidase 21 (USP21) increasing the stability of forkhead box protein M1 (FOXM1) and promoting M2 polarization of macrophages in endometriosis (EM). Methods Eutopic endometrial stromal cells (EESC) collected from patients and normal endometrial stromal cells (NESC) from routine health examiners were cultured in vitro, and the expression levels of USP21 and FOXM1 were detected using RT-qPCR and Western blot. EESCs were co-cultured with macrophages. M1 polarization markers of interleukin 6 (IL-6) and CXC chemokine ligand 10 (CXCL10) and M2 polarization markers of CD206 and fibronectin 1 (FN1) were tested using RT-qPCR. M2 marker CD206 was further detected by flow cytometry. IL-6, tumor necrosis factor-alpha (TNF-α), IL-10, and transforming growth factor-beta (TGF-β) levels in cell supernatant were detected by ELISA. Co-immunoprecipitation was used to assess the interaction between USP21 and FOXM1, and the ubiquitination level of FOXM1. FOXM1 protein stability was detected through cycloheximide (CHX) assay. Results USP21 and FOXM1 expression levels in the EESC group were significantly increased compared with those in the NESC group; compared with the NESC + M0 group, the EESC + M0 group showed no significant difference in the expression of M1 polarization markers (IL-6 and CXCL10), but increased expression of M2 polarization markers (CD206 and FN1), along with notably increased number of M2 macrophages; there was no significant difference in IL-6 and TNF-α levels, but increased levels of IL-10 and TGF-β in the cell supernatant. The above findings indicated that the deubiquitinase USP21 was highly expressed in EM, promoting M2 polarization of macrophages. Knocking down USP21 or FOXM1 can inhibit M2 polarization of EM macrophages. USP21 interacted with FOXM1 in EESC, leading to a decrease in FOXM1 ubiquitination level and an increase in FOXM1 protein stability. Overexpression of FOXM1 reversed the inhibitory effect of knocking down USP21 on M2 polarization of EM macrophages. Conclusion The deubiquitinase USP21 interacts with FOXM1 to increase the stability of FOXM1 and promote M2 polarization of EM macrophages.
Humans
;
Forkhead Box Protein M1/genetics*
;
Female
;
Macrophages/cytology*
;
Endometriosis/genetics*
;
Ubiquitin Thiolesterase/genetics*
;
Cells, Cultured
;
Endometrium/metabolism*
;
Ubiquitination
;
Adult
;
Interleukin-10/metabolism*
;
Interleukin-6/metabolism*
;
Protein Stability
;
Stromal Cells/metabolism*
6.The research on the mechanism of GBP2 promoting the progression of silicosis by inducing macrophage polarization and epithelial cell transformation.
Maoqian CHEN ; Jing WU ; Xuan LI ; Jiawei ZHOU ; Yafeng LIU ; Jianqiang GUO ; Anqi CHENG ; Dong HU
Chinese Journal of Cellular and Molecular Immunology 2025;41(7):611-619
Objective This study aims to investigate the expression, phenotypic changes, and mechanisms of action of guanylate-binding protein 2 (GBP2) in the process of silica-induced pulmonary fibrosis. Methods The expression and localization of GBP2 in silicotic lung tissue were detected by immunohistochemical staining and immunofluorescence. An in vitro cell model was constructed, and methods such as Western blot and real-time quantitative reverse transcription polymerasechain reaction were utilized to investigate the function of GBP2 in different cell lines following silica stimulation. The mechanism of action of GBP2 in various cell lines was elucidated using Western blot analysis. Results GBP2 was highly expressed in the lung tissue of patients with silicosis. Immunohistochemical staining and immunofluorescence have revealed that GBP2 was localized in macrophages and epithelial cells. In vitro cell experiments demonstrated that silicon dioxide stimulated THP-1 cells to activate the c-Jun pathway through GBP2, promoting the secretion of inflammatory factors and facilitating the occurrence of M2 macrophage polarization. In epithelial cells, GBP2 promoted the occurrence of epithelial to mesenchymal transition (EMT) by upregulating Krueppel-like factor 8 (KLF8). Conclusion GBP2 not only activates c-Jun in macrophages to promote the production of inflammatory factors and the occurrence of M2 macrophage polarization, but also activates the transcription factor KLF8 in epithelial cells to induce EMT, collectively promoting the progression of silicosis.
Humans
;
Silicosis/genetics*
;
Macrophages/cytology*
;
Epithelial Cells/pathology*
;
GTP-Binding Proteins/physiology*
;
Epithelial-Mesenchymal Transition
;
Disease Progression
;
Cell Line
;
Male
7.The high expression of decorin in decidua of patients with missed abortion and inhibitory mechanism of decorin on the M1 macrophages polarization derived from peripheral blood mononuclear cells.
Chinese Journal of Cellular and Molecular Immunology 2025;41(8):724-734
Objective To explore the alterations in macrophage polarization and the expression of decorin (DCN) protein in the decidua of patients with missed abortion (MA), as well as to elucidate the regulatory effect of DCN on macrophage polarization. Methods Flow cytometry was employed to assess the polarization ratio of decidual macrophages in MA, recurrent spontaneous abortion (RSA) and normal pregnancy (NP); The expression and localization of DCN and hypoxia-inducible factor 1α (HIF-1α) in decidua and villi were assessed by immunohistochemistry staining, while their protein levels were measured by Western blot. Primary trophoblasts and peripheral blood mononuclear cell (PBMC)-derived macrophages were isolated and cultured. ELISA was conducted to quantify DCN levels in the culture supernatant of primary trophoblast and PBMC-derived macrophages. Additionally, flow cytometry was applied to evaluate the polarization ratio of PBMC-derived macrophages. Immunofluorescence cytochemical staining was conducted to examine HIF-1α expression in macrophages. Western blot was performed to detect the expression of proteins related to the gene associated with retinoid-IFN-induced mortality 19 (GRIM-19)/signal transducer and activator of transcription 3 (STAT3)/HIF-1α signaling pathway in macrophages. Results The polarization ratio of M1 macrophages in the decidua of abortion patients was significantly higher than that of NP, whereas the ratio of M2 macrophages was significantly lower. The expression of DCN and HIF-1α protein were significantly evaluated in abortion patients compared to NP. The supernatant DCN content and HIF-1α protein expression of primary trophoblast and PBMC-derived macrophages cultured under 10 mL/L O2 for 24 hours were markedly increased compared to cells treated with 210 mL/L O2. Compared with the PBS group, the proportion of M1 macrophage and GRIM-19 protein expression were significantly reduced in the DCN group, while phosphorylated STAT3 (p-STAT3) and HIF-1α protein expression were significantly increased. Conclusion The expression of DCN in decidua and villi of MA is higher than that of NP. DCN exhibits an inhibitory effect on the M1 polarization of PBMCs-derived macrophages, which is likely mediated through the GRIM-19/STAT3/HIF-1α signaling pathway.
Humans
;
Female
;
Decidua/metabolism*
;
Macrophages/cytology*
;
Decorin/genetics*
;
Pregnancy
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Adult
;
Leukocytes, Mononuclear/cytology*
;
Abortion, Missed/genetics*
;
STAT3 Transcription Factor/metabolism*
;
Cells, Cultured
;
Young Adult
8.Advances in Study of Erythroblastic Island Macrophages--Review.
Journal of Experimental Hematology 2025;33(1):292-295
Bone marrow microenvironment is the environment in which hematopoietic stem cells live, mainly composed of bone marrow stromal cells, microvessels, nerves, and cytokines secreted by stromal cells. The bone marrow microenvironment plays a crucial role in the self-renewal, directed differentiation and proliferation of hematopoietic stem cells and the regulation of proliferation, differentiation and maturation of hematopoietic cells. A class of macrophages exists in the bone marrow microenvironment, the bone marrow-resident tissue macrophages, which plays a crucial role in maintaining homeostasis in vivo, and three subpopulations of bone marrow-resident tissue macrophages have been characterized: erythroblastic island macrophages (EIMs), hematopoietic stem cell niche macrophages, and bone macrophages. This review focuses on the functions, surface markers and modeling of EIMs.
Macrophages/cytology*
;
Humans
;
Erythroblasts/cytology*
;
Animals
;
Hematopoietic Stem Cells/cytology*
9.SLC1A5 overexpression accelerates progression of hepatocellular carcinoma by promoting M2 polarization of macrophages.
Jinhua ZOU ; Hui WANG ; Dongyan ZHANG
Journal of Southern Medical University 2025;45(2):269-284
OBJECTIVES:
To investigate the clinical significance of SLC1A5 overexpression in pan-cancer and its mechanism for promoting hepatocellular carcinoma (HCC) progression.
METHODS:
We analyzed the correlation of SLC1A5 expression with clinical stage, lymph node metastasis and prognosis in pan-cancer using TCGA and ICGC datasets and explored its association with immune cell infiltration using EPIC, CIBERSORT, and TIMER algorithms. In HCC cell lines, the effects of lentivirus-mediated SLC1A5 overexpression or RNA interference on cell proliferation were examined using CCK-8 assay, and the growth of HCC cell xenografts overexpressing SLC1A5 was observed in nude mice. The effects of SLC1A5 overexpression or silencing in HCC cells on macrophage polarization were evaluated in a cell co-culture system.
RESULTS:
SLC1A5 was mainly localized on cell membrane and was highly expressed in most cancers in association with clinical stage, lymph node metastasis and poor prognosis. SLC1A5 expression was positively correlated with immunity score in 13 cancer types, especially in low-grade glioma (LGG), LIHC and thyroid cancer. SLC1A5 was positively correlated with macrophage infiltration level in LGG and LIHC but negatively correlated with macrophage infiltration in 5 cancers including lung squamous carcinoma, pancreatic carcinoma, and gastric carcinoma. Patients with SLC1A5 overexpression and high level of M2 macrophage infiltration had the worst survival outcomes. SLC1A5 was correlated with immunosuppression-related genes, cytokines, and cytokine receptors, which was the most obvious in LGG and LIHC. SLC1A5 was highly expressed in different HCC cell lines, and its overexpression promoted HCC cell proliferation both in vitro and in nude mice. In the cell co-culture experiment, SLC1A5 was positively correlated with the molecular markers of M2 polarization of macrophages, and its overexpression strongly promoted M2 polarization of the macrophages and inhibited T cell secretion of IFN-γ.
CONCLUSIONS
SLC1A5 expression level is correlated with clinical stage, lymph node metastasis, prognosis, and immune cell infiltration in most cancers, and its overexpression promotes HCC progression by inhibiting T-cell function via promoting M2 polarization of macrophages.
Humans
;
Carcinoma, Hepatocellular/metabolism*
;
Liver Neoplasms/metabolism*
;
Animals
;
Macrophages/cytology*
;
Disease Progression
;
Cell Line, Tumor
;
Mice
;
Amino Acid Transport System ASC/genetics*
;
Cell Proliferation
;
Lymphatic Metastasis
;
Mice, Nude
;
Prognosis
;
Minor Histocompatibility Antigens
10.Ecliptasaponin A ameliorates DSS-induced colitis in mice by suppressing M1 macrophage polarization via inhibiting the JAK2/STAT3 pathway.
Minzhu NIU ; Lixia YIN ; Tong QIAO ; Lin YIN ; Keni ZHANG ; Jianguo HU ; Chuanwang SONG ; Zhijun GENG ; Jing LI
Journal of Southern Medical University 2025;45(6):1297-1306
OBJECTIVES:
To investigate the effect of ecliptasaponin A (ESA) for alleviating dextran sulfate sodium (DSS)-induced inflammatory bowel disease (IBD) in mice and the underlying mechanism.
METHODS:
Twenty-four male C57BL/6 mice (8-10 weeks old) were equally randomized into control group, DSS-induced IBD model group, and DSS+ESA (50 mg/kg) treatment group. Disease activity index (DAI), colon length and spleen index of the mice were measured, and intestinal pathology was examined with HE staining. The expressions of inflammatory mediators (TNF-α, IL-6, and iNOS) in the colon mucosa were detected using ELISA and RT-qPCR, and intestinal barrier integrity was assessed using AB-PAS staining and by detecting ZO-1 and claudin-1 expressions using immunofluorescence staining and Western blotting. In cultured RAW264.7 macrophages, the effects of treatment with 50 μmol/L ESA, alone or in combination with 20 μmol/L RO8191 (a JAK2/STAT3 pathway activator), on M1 polarization of the cells induced by LPS and IFN-γ stimulation and expressions of JAK2/STAT3 pathway proteins were analyzed using flow cytometry and Western blotting.
RESULTS:
In the mouse models of DSS-induced IBD, ESA treatment significantly alleviated body weight loss and colon shortening, reduced DAI, spleen index and histological scores, and ameliorated inflammatory cell infiltration in the colon tissue. ESA treatment also suppressed TNF‑α, IL-6 and iNOS expressions, protected the goblet cells and the integrity of the mucus and mechanical barriers, and upregulated the expressions of ZO-1 and claudin-1. ESA treatment obviously decreased CD86+ M1 polarization in the mesenteric lymph nodes of IBD mice and in LPS and IFN-γ-induced RAW264.7 cells, and significantly reduced p-JAK2 and p-STAT3 expressions in both the mouse models and RAW264.7 cells. Treatment with RO8191 caused reactivation of JAK2/STAT3 and strongly attenuated the inhibitory effect of ESA on CD86+ polarization in RAW264.7 cells.
CONCLUSIONS
ESA alleviates DSS-induced colitis in mice by suppressing JAK2/STAT3-mediated M1 macrophage polarization and mitigating inflammation-driven intestinal barrier damage.
Animals
;
Mice
;
Janus Kinase 2/metabolism*
;
STAT3 Transcription Factor/metabolism*
;
Mice, Inbred C57BL
;
Male
;
Dextran Sulfate
;
Macrophages/cytology*
;
Colitis/metabolism*
;
Saponins/pharmacology*
;
Signal Transduction/drug effects*
;
RAW 264.7 Cells
;
Triterpenes/pharmacology*
;
Interleukin-6/metabolism*

Result Analysis
Print
Save
E-mail