1.Caprylic Acid Improves Lipid Metabolism, Suppresses the Inflammatory Response and Activates the ABCA1/p-JAK2/p-STAT3 Signaling Pathway in C57BL/6J Mice and RAW264.7 Cells.
Xin Sheng ZHANG ; Peng ZHANG ; Ying Hua LIU ; Qing XU ; Yong ZHANG ; Hui Zi LI ; Lu LIU ; Yu Meng LIU ; Xue Yan YANG ; Chang Yong XUE
Biomedical and Environmental Sciences 2022;35(2):95-106
OBJECTIVE:
This study aimed to investigate the effects of caprylic acid (C8:0) on lipid metabolism and inflammation, and examine the mechanisms underlying these effects in mice and cells.
METHODS:
Fifty-six 6-week-old male C57BL/6J mice were randomly allocated to four groups fed a high-fat diet (HFD) without or with 2% C8:0, palmitic acid (C16:0) or eicosapentaenoic acid (EPA). RAW246.7 cells were randomly divided into five groups: normal, lipopolysaccharide (LPS), LPS+C8:0, LPS+EPA and LPS+cAMP. The serum lipid profiles, inflammatory biomolecules, and ABCA1 and JAK2/STAT3 mRNA and protein expression were measured.
RESULTS:
C8:0 decreased TC and LDL-C, and increased the HDL-C/LDL-C ratio after injection of LPS. Without LPS, it decreased TC in mice ( P < 0.05). Moreover, C8:0 decreased the inflammatory response after LPS treatment in both mice and cells ( P < 0.05). Mechanistic investigations in C57BL/6J mouse aortas after injection of LPS indicated that C8:0 resulted in higher ABCA1 and JAK2/STAT3 expression than that with HFD, C16:0 and EPA, and resulted in lower TNF-α, NF-κB mRNA expression than that with HFD ( P < 0.05). In RAW 264.7 cells, C8:0 resulted in lower expression of pNF-κBP65 than that in the LPS group, and higher protein expression of ABCA1, p-JAK2 and p-STAT3 than that in the LPS and LPS+cAMP groups ( P < 0.05).
CONCLUSION
Our studies demonstrated that C8:0 may play an important role in lipid metabolism and the inflammatory response, and the mechanism may be associated with ABCA1 and the p-JAK2/p-STAT3 signaling pathway.
ATP Binding Cassette Transporter 1/immunology*
;
Animals
;
Caprylates/chemistry*
;
Cholesterol/metabolism*
;
Diet, High-Fat/adverse effects*
;
Humans
;
Inflammation/metabolism*
;
Janus Kinase 2/immunology*
;
Lipid Metabolism/drug effects*
;
Macrophages/immunology*
;
Male
;
Mice
;
Mice, Inbred C57BL
;
RAW 264.7 Cells
;
STAT3 Transcription Factor/immunology*
;
Signal Transduction
2.Withaminimas A-F, six withanolides with potential anti-inflammatory activity from Physalis minima.
Shan-Shan WEI ; Cai-Yun GAO ; Rui-Jun LI ; Ling-Yi KONG ; Jun LUO
Chinese Journal of Natural Medicines (English Ed.) 2019;17(6):469-474
Withaminimas A-F (1-6), six new withaphysalin-type withanolides were isolated from the aerial parts of Physalis minima L.. The structures of these compounds were elucidated through a variety of spectroscopic techniques including HR-MS, NMR, and ECD. Compound 1 belongs to rare 18-norwithanolides, and 2-3 were 13/14-secowithanolides. According to the traditional usage of P. minima, inhibitory effects on nitric oxide (NO) production in lipopolysaccaride-activated RAW264.7 macrophages were evaluated, and compounds 1-4 exhibited significant inhibitory effects with IC values among 3.91-18.46 μmol·L.
Animals
;
Anti-Inflammatory Agents
;
chemistry
;
pharmacology
;
Drugs, Chinese Herbal
;
chemistry
;
pharmacology
;
Lipopolysaccharides
;
pharmacology
;
Macrophages
;
drug effects
;
immunology
;
Mice
;
Molecular Structure
;
Physalis
;
chemistry
;
RAW 264.7 Cells
;
Structure-Activity Relationship
;
Withanolides
;
chemistry
;
pharmacology
3.Hesperetin derivative-12 (HDND-12) regulates macrophage polarization by modulating JAK2/STAT3 signaling pathway.
Ling-Na KONG ; Xiang LIN ; Cheng HUANG ; Tao-Tao MA ; Xiao-Ming MENG ; Chao-Jie HU ; Qian-Qian WANG ; Yan-Hui LIU ; Qing-Ping SHI ; Jun LI
Chinese Journal of Natural Medicines (English Ed.) 2019;17(2):122-130
Macrophages show significant heterogeneity in function and phenotype, which could shift into different populations of cells in response to exposure to various micro-environmental signals. These changes, also termed as macrophage polarization, of which play an important role in the pathogenesis of many diseases. Numerous studies have proved that Hesperidin (HDN), a traditional Chinese medicine, extracted from fruit peels of the genus citrus, play key roles in anti-inflammation, anti-tumor, anti-oxidant and so on. However, the role of HDN in macrophage polarization has never been reported. Additional, because of its poor water solubility and bioavailability. Our laboratory had synthesized many hesperidin derivatives. Among them, hesperidin derivatives-12 (HDND-12) has better water solubility and bioavailability. So, we evaluated the role of HDND-12 in macrophage polarization in the present study. The results showed that the expression of Arginase-1 (Arg-1), interleukin-10 (IL-10), transforming growth factor β (TGF-β) were up-regulated by HDND-12, whereas the expression of inducible Nitric Oxide Synthase (iNOS) was down-regulated in LPS- and IFN-γ-treated (M1) RAW264.7 cells. Moreover, the expression of p-JAK2 and p-STAT3 were significantly decreased after stimulation with HDND-12 in M1-like macrophages. More importantly, when we taken AG490 (inhibitor of JAK2/STAT3 signaling), the protein levels of iNOS were significantly reduced in AG490 stimulation group compare with control in LPS, IFN-γ and HDND-12 stimulation cells. Taken together, these findings indicated that HDND-12 could prevent polarization toward M1-like macrophages, at least in part, through modulating JAK2/STAT3 pathway.
Animals
;
Cytokines
;
genetics
;
metabolism
;
Enzyme Inhibitors
;
pharmacology
;
Gene Expression Regulation
;
drug effects
;
Hesperidin
;
chemistry
;
pharmacology
;
Inflammation
;
genetics
;
metabolism
;
Janus Kinase 2
;
antagonists & inhibitors
;
metabolism
;
Macrophages
;
drug effects
;
immunology
;
metabolism
;
Medicine, Chinese Traditional
;
Mice
;
Molecular Structure
;
Phosphorylation
;
drug effects
;
RAW 264.7 Cells
;
STAT3 Transcription Factor
;
antagonists & inhibitors
;
metabolism
;
Signal Transduction
;
drug effects
4.Meta-analysis on effect of Grifola frondosa polysaccharide in regulating in vivo immunoregulatory function on animal disease models.
Ting ZHANG ; Fei ZHAO ; Kai-Nan WU ; Yu JIA ; Xu-Liang LIAO ; Feng-Wen YANG ; Jun-Hua ZHANG ; Bin MA
China Journal of Chinese Materia Medica 2019;44(23):5174-5183
The study aimed to explore the in vivo immunoregulatory function of Grifola frondosa polysaccharide( GFP) on animal disease models. Databases of PubMed,Embase,Web of Scinece,CNKI,CBM and Wan Fang Data were searched from the date of their establishment to February 2018. Two reviewers independently screened included studies and evaluated their quality by using SYRCLE's risk of bias tool. R software was used to analyze the data. Finally,20 animal experiment studies were included. According to Metaanalysis. For cellular immunity,GFP could effectively enhance the proliferation of effect or T cells,natural killer cells and macrophages in mice. The percentage of CD4+T cells( MD = 1. 89,95% CI [0. 94,2. 83],P < 0. 000 1),CD8+T cells( MD = 8. 46,95% CI[5. 93,11. 00],P<0. 000 1),NK cells( MD= 2. 67,95% CI [0. 23,5. 11],P= 0. 03),and macrophages( MD= 14. 09,95% CI[0. 84,27. 34],P= 0. 04) were all higher than those in control group. For humoral immunity,GFP could increase the secretion of TNF-α and INF-γ. The secretion of TNF-α( SMD = 15. 92,95% CI [9. 07,22. 76],P<0. 000 1) and INF-γ( SMD = 5. 34,95% CI[3. 42,7. 26],P<0. 000 1) were all higher than those in control group. In conclusion,GFP could regulate immunologic function by enhancing the proliferation activity of immune cells( CD4+T cells,CD8+T cells,NK cells and macrophages) and the secretion of immune factors( TNF-α and INF-γ) . However,it is necessary to further standardize the selection of specific surface markers of immune cells and the administration of GFP,in order to reduce the heterogeneity among the studies. At the same time,more attention shall be paid to experimental design,implementation and full report,especially to the establishment and implementation of animal experimental registration system,so as to improve the transparency and quality of the whole process of animal experimental research,enhance the value of basic research ultimately,and provide a reliable theoretical basis for the transformation of basic research into clinical research.
Animals
;
Cytokines/immunology*
;
Disease Models, Animal
;
Grifola/chemistry*
;
Immune System
;
Killer Cells, Natural/immunology*
;
Macrophages/immunology*
;
Mice
;
Polysaccharides/pharmacology*
;
T-Lymphocytes/immunology*
5.Discovery of synergistic anti-inflammatory compound combination from herbal formula GuGe FengTong Tablet.
Le-Le LIU ; Qun LIU ; Ping LI ; E-Hu LIU
Chinese Journal of Natural Medicines (English Ed.) 2018;16(9):683-692
Multi-components in herbal formulae exert holistic effects in synergistic or additive manners. However, appropriate strategies and supportive evidences are still lacking to uncover the synergistic or additive combinations. The present investigation aimed at seeking a screening strategy to identify the targeted combinations in GuGe FengTong Tablet (GGFTT), an herbal formula. Two compounds, belonging to different chemical classes, were combined with different concentration ratios and their anti-inflammation effects were investigated. The most significant anti-inflammatory combinations were evaluated by combination index (CI) method (additive effect, CI = 1; synergism, CI < 1; antagonism, CI > 1). The modulating effects of candidate combinations on pro-inflammatory cytokines and MAPKs signaling pathway were also detected. Two combinations, "biochanin A + 6-gingerol" (Bio-6G) and "genistein + 6-gingerol" (Gen-6G), showed synergistic effects (CI < 1), and Bio-6G was selected for further study. Compared with single compound, Bio-6G could synergistically inhibit the production of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) and the activation of MAPKs signaling pathway in LPS-stimulated RAW264.7 cells. The combined results showed that Bio-6G was a synergistic anti-inflammatory combination in GGFTT. Our results could provide a useful strategy to screen the synergistic combinations in herbal formulae.
Animals
;
Anti-Inflammatory Agents
;
chemistry
;
pharmacology
;
Drug Compounding
;
Drug Synergism
;
Drugs, Chinese Herbal
;
chemistry
;
pharmacology
;
Interleukin-1beta
;
immunology
;
Macrophages
;
drug effects
;
immunology
;
Mice
;
NF-kappa B
;
immunology
;
RAW 264.7 Cells
;
Tablets
;
chemistry
;
pharmacology
;
Tumor Necrosis Factor-alpha
;
immunology
6.In vivo and in vitro anti-sepsis effects of physcion 8-O-β-glucopyranoside extracted from Rumex japonicus.
Wei-Jun FU ; Jian-Jun TANG ; Hui WANG ; Hong-Yun WEI ; Shu-Min CAI ; Zhen-Hua ZENG ; Hui CHEN ; Zhong-Qing CHEN
Chinese Journal of Natural Medicines (English Ed.) 2017;15(7):534-539
The present study was designed to investigate the anti-sepsis effects of physcion 8-O-β-glucopyranoside (POG) isolated from Rumex japonicas and explore its possible pharmacological mechanisms. POG was extracted from R. japonicas by bioactivity-guided isolation with the anti-sepsis agents. Survival analysis in septic mouse induced by LPS and heat-killed Escherichia coli were used to evaluate the protective effect of POG (40 mg·kg, i.p.) on sepsis. Cytokines including TNF-α, IL-1β and IL-6 in RAW 264.7 cells induced by LPS (100 ng·mL) were determined by ELISA. In addition, the proteins expressions of TLR2 and TLR4 were determined by Western blotting assay. Our results demonstrated that POG (40 mg·kg, i.p.) possessed significant protective activity on the endotoxemic mice. The POG treatment (20, 40, and 80 μg·mL) significantly decreased the TNF-α, IL-1β and IL-6 induced by LPS (P < 0.01) in a concentration-dependent manner. Furthermore, the TLR4 and TLR2 proteins were also down-regulated by POG at 20 (P < 0.01), 40 (P < 0.01), and 80 μg·mL (P < 0.01). The present study demonstrated that the POG extracted from R. japonicas possessed significant anti-sepsis effect on endotoxemic mice, and can be developed as a novel drug for treating sepsis in the future.
Animals
;
Anti-Inflammatory Agents
;
administration & dosage
;
Drugs, Chinese Herbal
;
administration & dosage
;
Emodin
;
administration & dosage
;
analogs & derivatives
;
Glucosides
;
administration & dosage
;
Humans
;
Interleukin-1beta
;
genetics
;
immunology
;
Interleukin-6
;
genetics
;
immunology
;
Interleukin-8
;
genetics
;
immunology
;
Macrophages
;
drug effects
;
immunology
;
Male
;
Mice
;
Mice, Inbred ICR
;
RAW 264.7 Cells
;
Rumex
;
chemistry
;
Sepsis
;
drug therapy
;
genetics
;
immunology
;
Tumor Necrosis Factor-alpha
;
genetics
;
immunology
7.Differences in anti-inflammatory effects between two specifications of Scutellariae Radix in LPS-induced macrophages in vitro.
Qian-Yu CHEN ; Chao-Qun WANG ; Zhi-Wei YANG ; Qi TANG ; Huan-Ran TAN ; Xuan WANG ; Shao-Qing CAI
Chinese Journal of Natural Medicines (English Ed.) 2017;15(7):515-524
Scutellariae Radix (SR), the root of Scutellaria baicalensis Georgi, is used as an antipyretic drug and has been demonstrated to have anti-inflammatory activity. SR is divided into two specifications, "Ku Qin" (KQ) and "Zi Qin" (ZQ), for use against different symptoms (upper energizer heat or lower portion of the triple energizer), according to the theory of traditional Chinese medicine (TCM). However, differences in the efficacies of these two specifications have not been determined. In the present study, we aimed to characterize the differences in the anti-inflammatory activities between KQ and ZQ and to explore how their differences are manifested in lipopolysaccharide (LPS)-induced macrophages. Our results showed that, in RAW264.7 cells (a mouse macrophage cell line derived from ascites), KQ and ZQ displayed anti-inflammatory effects by inhibiting the release of nitric oxide (NO), inducible NOS (iNOS), and nuclear factor-κB (NF-κB) in a dose-dependent manner without distinction. In NR8383 cells (a rat alveolar macrophage cell line), KQ and ZQ displayed similar effects on NO, iNOS, and NF-κB as seen in RAW264.7 cells, but KQ showed a higher inhibition rate for NO and iNOS than that shown by ZQ at the same concentration. These results indicated that there were differences in efficacy between KQ and ZQ in treating lung inflammation. Our findings provided an experimental evidence supporting the different uses of KQ and ZQ in clinic, as noted in ancient herbal records.
Animals
;
Anti-Inflammatory Agents
;
pharmacology
;
Cell Line
;
Lipopolysaccharides
;
pharmacology
;
Macrophages
;
drug effects
;
immunology
;
Mice
;
NF-kappa B
;
genetics
;
immunology
;
Nitric Oxide Synthase Type II
;
genetics
;
immunology
;
RAW 264.7 Cells
;
Rats
;
Scutellaria baicalensis
;
chemistry
8.Pentoxifylline inhibits liver fibrosis via hedgehog signaling pathway.
Hui LI ; Juan HUA ; Chun-Xia GUO ; Wei-Xian WANG ; Bao-Ju WANG ; Dong-Liang YANG ; Ping WEI ; Yin-Ping LU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):372-376
Infection of schistosomiasis japonica may eventually lead to liver fibrosis, and no effective antifibrotic therapies are available but liver transplantation. Hedgehog (HH) signaling pathway has been involved in the process and is a promising target for treating liver fibrosis. This study aimed to explore the effects of pentoxifylline (PTX) on liver fibrosis induced by schistosoma japonicum infection by inhibiting the HH signaling pathway. Phorbol12-myristate13-acetate (PMA) was used to induce human acute mononuclear leukemia cells THP-1 to differentiate into macrophages. The THP-1-derived macrophages were stimulated by soluble egg antigen (SEA), and the culture supernatants were collected for detection of activation of macrophages. Cell Counting Kit-8 (CCK-8) was used to detect the cytotoxicity of the culture supernatant and PTX on the LX-2 cells. The LX-2 cells were administered with activated culture supernatant from macrophages and(or) PTX to detect the transforming growth factor-β gene expression. The mRNA expression of shh and gli-1, key parts in HH signaling pathway, was detected. The mRNA expression of shh and gli-1 was increased in LX-2 cells treated with activated macrophages-derived culture supernatant, suggesting HH signaling pathway may play a key role in the activation process of hepatic stellate cells (HSCs). The expression of these genes decreased in LX-2 cells co-cultured with both activated macrophages-derived culture supernatant and PTX, indicating PTX could suppress the activation process of HSCs. In conclusion, these data provide evidence that PTX prevents liver fibrogenesis in vitro by the suppression of HH signaling pathway.
Animals
;
Antigens, Helminth
;
isolation & purification
;
pharmacology
;
Cell Culture Techniques
;
Cell Differentiation
;
drug effects
;
Cell Line
;
Culture Media, Conditioned
;
chemistry
;
pharmacology
;
Gene Expression Regulation
;
Hedgehog Proteins
;
agonists
;
antagonists & inhibitors
;
genetics
;
immunology
;
Hepatic Stellate Cells
;
cytology
;
drug effects
;
metabolism
;
Humans
;
Liver Cirrhosis
;
metabolism
;
parasitology
;
prevention & control
;
Macrophage Activation
;
drug effects
;
Macrophages
;
cytology
;
drug effects
;
immunology
;
Models, Biological
;
Monocytes
;
cytology
;
drug effects
;
metabolism
;
Pentoxifylline
;
pharmacology
;
Phosphodiesterase Inhibitors
;
pharmacology
;
RNA, Messenger
;
genetics
;
immunology
;
Schistosoma japonicum
;
chemistry
;
Signal Transduction
;
Tetradecanoylphorbol Acetate
;
pharmacology
;
Zinc Finger Protein GLI1
;
genetics
;
immunology
;
Zygote
;
chemistry
9.A polysaccharide purified from Radix Adenophorae promotes cell activation and pro-inflammatory cytokine production in murine RAW264.7 macrophages.
Jing-Wen LI ; Yang LIU ; Bao-Hui LI ; Yue-Yang WANG ; Hui WANG ; Chang-Lin ZHOU
Chinese Journal of Natural Medicines (English Ed.) 2016;14(5):370-376
Radix Adenophorae, a traditional Chinese medicine, has been reported to have a variety of biological functions. In the present study, a polysaccharide component, Radix Adenophorae Polysaccharide (RAPS), was purified from Radix Adenophorae by decoloring with ADS-7 macroporous adsorption resin, DEAE-52 cellulose ion-exchange chromatography, and Sephacryl S-300HR gel chromatography, with the purity of 98.3% and a molecular weight of 1.8 × 10(4) Da. The cell viability assay and microscopic examination revealed that RAPS promoted the proliferation and activation of macrophages. At 400 μg·mL(-1), RAPS stimulated RAW264.7 cell proliferation by 1.91-fold compared with the control. Meanwhile, RAPS significantly increased the secretion of pro-inflammatory cytokines (TNF-α and IL-6) in a dose-dependent manner in the supernatant of RAW264.7 cell culture as determined by ELISA. At 400 μg·mL(-1), the production of TNF-iα was 20.8-fold higher than that of the control. Simultaneously, the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS) were increased in RAW264.7 cells incubated with RAPS, as measured by Griess assay and Western blot analysis. The NO production of cells treated with RAPS (400 μg·mL(-1)) reached 15.8 μmol·L(-1), which was 30.4-fold higher than that of the control (0.53 μmol·L(-1)). These data suggested that RAPS may enhance the immune function and protect against exogenous pathogens by activating macrophages.
Animals
;
Campanulaceae
;
chemistry
;
Cytokines
;
genetics
;
immunology
;
Immunologic Factors
;
pharmacology
;
Interleukin-6
;
genetics
;
immunology
;
Macrophage Activation
;
drug effects
;
Macrophages
;
drug effects
;
immunology
;
Mice
;
Nitric Oxide
;
immunology
;
Plant Extracts
;
pharmacology
;
Polysaccharides
;
pharmacology
;
Tumor Necrosis Factor-alpha
;
genetics
;
immunology
10.Study on effects of Tripterygium wilfordii polycoride in resisting macrophage inflammation and regulating inflammation via TLR4/NF-κB.
Dan-ping QIN ; Yi-jun ZHOU ; Shao-zhu ZHANG ; Jun-min CAO ; Li-yu XU ; Guo-dong FANG ; Jia WANG
China Journal of Chinese Materia Medica 2015;40(16):3256-3261
To investigate the effect of Tripterygium wilfordii polycoride (TWP) on LPS-induced macrophage inflammatory response, particularly the inhibitory effect on inflammatory factors TNF-α and IL-1β and the regulatory effect on inflammation via TLR4/NF-κB. The MTT method was adopted to test the effects of tested drugs, TWP, dexamethasone (DXM) and azathioprine (AZA) on cell growth to define the appropriate concentration. LPS was used to induce the inflammatory reaction in mouse RAW264. 7 cell lines. The Elisa kit was adopted to test the release level of TNF-α and IL-1β. The Western blotting was applied to test the protein expressions of TNF-α and IL-1β. The RT-PCR was adopted to test the expressions of TLR4 and NF-κB. According to the results, TWP could inhibit the release of macrophage inflammatory factors TNF-α and IL-1β in a dose dependent manner. All of TWP groups showed a weaker efficacy than that of the DXM group. But the TWP high dose group revealed a better effect on TNF-α and equal effect on IL-1β compared with the AZA group. TWP show an equal or better effect in down-regulating TLR4 and NF-κB p65 expressions in a dose dependent manner than DXM and AZA. In conclusion, TWP could inhibit TLR4 and NF-κB p65, which may be related to the down-regulation of TLR4 and NF-κB p65 receptor expressions.
Animals
;
Anti-Inflammatory Agents
;
pharmacology
;
Cell Proliferation
;
drug effects
;
Down-Regulation
;
drug effects
;
Drugs, Chinese Herbal
;
pharmacology
;
Humans
;
Inflammation
;
drug therapy
;
genetics
;
immunology
;
physiopathology
;
Interleukin-1beta
;
genetics
;
immunology
;
Macrophages
;
drug effects
;
immunology
;
Mice
;
NF-kappa B
;
genetics
;
immunology
;
RAW 264.7 Cells
;
Toll-Like Receptor 4
;
genetics
;
immunology
;
Transcription Factor RelA
;
genetics
;
immunology
;
Tripterygium
;
chemistry

Result Analysis
Print
Save
E-mail