1.Regulation of colony-stimulating factor 1 receptor inhibitor pexidartinib on the senescence of mouse bone marrow-derived macrophages stimulated by lipopolysaccharide.
Tian Jiao XIAO ; Jie ZHANG ; Jia Bing KANG ; Li LI ; Ji Fan ZHAN ; Yan WEI ; Ai TIAN
Chinese Journal of Stomatology 2023;58(6):575-583
Objective: To investigate the effects of colony-stimulating factor 1 receptor (CSF-1R) inhibitor pexidartinib (PLX3397) on the senescence of bone marrow-derived macrophages (BMDM) stimulated by lipopolysaccharide (LPS). Methods: BMDM were isolated and cultured from femurs and tibiae of 10 male C57BL/6 mice aged 6-8 weeks (obtained from Laboratory Animal Center of Guizhou Medical University). They were divided into blank control group, LPS group (treated with 1 μg/ml LPS for 24 h) as well as low, medium and high concentration PLX3397 pretreatment groups (treated with 100, 500 and 1 000 nmol/L PLX3397 for 4 h respectively followed by 1 μg/ml LPS for 24 h). The corresponding markers of macrophages were detected by flow cytometry. Cell viability was detected by cell counting kit-8 and cellular senescence was detected by senescence-associated-β-galactosidase (SA-β-gal) staining. Meanwhile, protein expressions of cycle-dependent kinase inhibitor p16, p21 and CSF-1R were detected by Western blotting, and the expressions of p16 and p21 were detected by intracellular immunofluorescence. Real-time fluorescence quantitative PCR (RT-qPCR) was used to investigate the mRNA levels of senescence-associated secretory phenotype (SASP) genes including interleukin (IL), IL-1β, chemokine-1/10 (CXCL-1/10), matrix metalloproteinase-8 (MMP-8), and transforming growth factor-β (TGF-β). Results: The rate of SA-β-gal positive staining in medium and high concentration PLX3397 pretreatment groups [(39.33±4.93)% and (36.33±3.06)% respectively] were significantly downregulated compared with LPS group [(52.00±3.00)%] (P=0.020, P=0.005). The expression of CSF-1R protein in low, medium and high concentration PLX3397 pretreatment groups were (0.74±0.18, 0.61±0.07, 0.54±0.06), all of which were significantly lower than that in LPS group (1.16±0.08) (P=0.013, P=0.002, P<0.001). The expression levels of CSF-1R mRNA in low, medium and high concentration PLX3397 pretreatment groups (1.04±0.06, 0.90±0.05, 1.18±0.08) showed similar trend (2.90±0.25) (P<0.001). The average fluorescence intensity of p16 in all PLX3397 pretreatment groups were 49.76±3.65, 48.21±1.72, 47.99±1.26 respectively, which were significantly lower than that in LPS group (66.88±5.85) (P=0.001, P<0.001, P<0.001). The average fluorescence intensity of p21 in medium and high concentration PLX3397 pretreatment groups were (34.43±3.62, 30.13±0.86), significantly lower than that in LPS group (46.82±5.33) (P=0.043, P=0.007). The expression of p16 protein in low, medium and high concentration PLX3397 pretreatment groups (0.56±0.04, 0.55±0.04, 0.35±0.19) were significantly lower than that in LPS group (0.98±0.10) (P=0.003, P=0.002, P<0.001), as well the expression of p21 protein (0.69±0.20, 0.42±0.08, 0.26±0.14) (P=0.032, P=0.002, P<0.001). According to the results of RT-qPCR, the expressions of IL-6, IL-1β, CXCL-1, CXCL-10 and MMP-8 in PLX3397 pretreatment groups were significantly lower than those in LPS group (P<0.001), while the expression of TGF-β increased (P<0.001). Conclusions: LPS could induce the cell senescence, increase the secretion of SASP and aggravate local inflammation by activating the CSF-1R on the cell surface of bone marrow-derived macrophages. CSF-1R inhibitor PLX3397 might attenuate CSF-1R activation associated with LPS and inhibit the senescence of bone marrow-derived macrophages induced by LPS.
Mice
;
Animals
;
Male
;
Lipopolysaccharides/pharmacology*
;
Macrophage Colony-Stimulating Factor/metabolism*
;
Matrix Metalloproteinase 8/metabolism*
;
Mice, Inbred C57BL
;
Macrophages
;
Transforming Growth Factor beta/metabolism*
;
RNA, Messenger/metabolism*
2.Effect of wheat-grain moxibustion on Wnt/β-catenin signaling pathway in bone marrow cell in mice with bone marrow inhibition.
Tao ZHU ; Yan-Ting CHENG ; Yan-Zhu MA ; Shuai ZHAO ; Xia LI
Chinese Acupuncture & Moxibustion 2023;43(1):67-71
OBJECTIVE:
To observe the effect of wheat-grain moxibustion at "Dazhui" (GV 14), "Zusanli" (ST 36) and "Sanyinjiao" (SP 6) on Wnt/β-catenin signaling pathway in bone marrow cell in mice with bone marrow inhibition, and to explore the possible mechanism of wheat-grain moxibustion in treating bone marrow inhibition.
METHODS:
Forty-five SPF male CD1(ICR) mice were randomly divided into a blank group, a model group and a wheat-grain moxibustion group, 15 mice in each group. The bone marrow inhibition model was established by intraperitoneal injection of 80 mg/kg of cyclophosphamide (CTX). The mice in the wheat-grain moxibustion group were treated with wheat-grain moxibustion at "Dazhui" (GV 14), "Zusanli" (ST 36) and "Sanyinjiao" (SP 6), 3 moxa cones per acupoint, 30 s per moxa cone, once a day, for 7 consecutive days. The white blood cell count (WBC) was measured before modeling, before intervention and 3, 5 d and 7 d into intervention. After intervention, the general situation of mice was observed; the number of nucleated cells in bone marrow was detected; the serum levels of interleukin-3 (IL-3), interleukin-6 (IL-6) and granulocyte macrophage colony stimulating factor (GM-CSF) were measured by ELISA; the protein and mRNA expression of β-catenin, cyclinD1 and C-Myc in bone marrow cells was measured by Western blot and real-time PCR method.
RESULTS:
Compared with the blank group, the mice in the model group showed sluggish reaction, unstable gait, decreased body weight, and the WBC, number of nucleated cells in bone marrow as well as serum levels of IL-3, IL-6, GM-CSF were decreased (P<0.01), and the protein and mRNA expression of β-catenin, cyclinD1 and C-Myc was decreased (P<0.01). Compared with the model group, the mice in the wheat-grain moxibustion group showed better general condition, and WBC, the number of nucleated cells in bone marrow as well as serum levels of IL-3, IL-6, GM-CSF were increased (P<0.01, P<0.05), and the protein and mRNA expression of β-catenin, cyclinD1 and C-Myc was increased (P<0.05).
CONCLUSION
Wheat-grain moxibustion shows therapeutic effect on bone marrow inhibition, and its mechanism may be related to activating Wnt/β-catenin signaling pathway in bone marrow cells, improving bone medullary hematopoiesis microenvironment and promoting bone marrow cell proliferation.
Animals
;
Male
;
Mice
;
beta Catenin/metabolism*
;
Bone Marrow/physiopathology*
;
Bone Marrow Cells/physiology*
;
Granulocyte-Macrophage Colony-Stimulating Factor/metabolism*
;
Interleukin-3/metabolism*
;
Interleukin-6/metabolism*
;
Mice, Inbred ICR
;
Moxibustion/methods*
;
RNA, Messenger/metabolism*
;
Triticum
;
Wnt Signaling Pathway
;
Hematopoiesis
3.Relationship between promoting effect of Zuogui Pills on angiogenesis of reproductive organs and mobilization factors GM-CSF, SDF-1, and their receptors of EPCs in early-aging rats.
Qian-Qian SONG ; Heng DUAN ; Wan-Chun PENG ; Xiao-Jing WEI
China Journal of Chinese Materia Medica 2023;48(16):4467-4474
This study aimed to investigate the relationship between the promoting effect of Zuogui Pills on ovarian and vaginal angiogenesis in early-aging rats and mobilization factors granulocyte-macrophage colony-stimulating factor(GM-CSF), stromal cell-derived factor-1(SDF-1), and their receptors of endothelial progenitor cells(EPCs) and explore the mechanism of Zuogui Pills in improving reproductive hypofunction in early-aging rats. Ultra-high performance liquid chromatography-tandem mass spectrometry(UHPLC-MS/MS) was used to analyze the chemical components of the extract of Zuogui Pills. Forty 14-month-old female early-aging rats with estrous cycle disorder were randomly divided into a blank group, a conjugated estrogen group(conjugated estrogen suspension, 65 μg·kg~(-1)), and low-(11 g·kg~(-1)) and high-dose(33 g·kg~(-1)) Zuogui Pills groups, with 10 rats in each group. In addition, 10 4-month-old female rats were assigned to the youth control group. The rats in the blank group and the youth control group were treated with 20 g·kg~(-1) distilled water by gavage, while those in the groups with drug intervention were treated with corresponding drugs by gavage, once a day for 15 days. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of SDF-1 and GM-CSF in the mobilization of EPCs in serum. Hematoxylin-eosin(HE) staining was used to observe the changes in the number of ovarian follicles at all levels and corpus luteum, the number of vaginal epithelial layers, the number of vaginal folds, and the blood vessels of ovarian and vaginal tissues in the groups with drug intervention. Western blot was used to detect the expression of ER, GM-CSFR, CXCR4, and CXCR7 proteins in ovarian and vaginal tissues. As revealed by the results, the blank group showed decreased number of corpus luteum, gro-wing follicles at all levels, and blood vessels(P<0.05), decreased thickness of vaginal mucosa, the number of epithelial layers, the number of vaginal folds, and the number of vessels in the lamina propria(P<0.05), reduced content of SDF-1 and GM-CSF in the peripheral blood(P<0.05), and down-regulated levels of ER, CXCR4, CXCR7, and GM-CSFR proteins in ovarian and vaginal tissues(P<0.05). The groups with drug intervention showed increased number of growing follicles at all levels, corpus luteum, and blood vessels(P<0.05), decreased number of atresia follicles(P<0.05), increased thickness of vaginal mucosa, the number of epithelial layers, the number of vaginal mucosal folds, and the number of blood vessels in the lamina propria(P<0.05), increased content of SDF-1 and GM-CSF in the peripheral blood(P<0.05), and up-regulated levels of ER, CXCR4, CXCR7, and GM-CSFR proteins in ovarian and vaginal tissues(P<0.05). This experiment suggests that Zuogui Pills may promote ovarian and vaginal angiogenesis and improve the reproductive function of early-aging rats by up-regulating the levels of mobilization factors SDF-1, GM-CSF, and their receptors of EPCs.
Rats
;
Female
;
Animals
;
Granulocyte-Macrophage Colony-Stimulating Factor
;
Estrogens, Conjugated (USP)
;
Tandem Mass Spectrometry
;
Aging
;
Genitalia
4.The Effect of Improved Culturing Method on the Detection Rate of Chromosome Karyotyping in Multiple Myeloma.
Nan WANG ; Ke-Ke FAN ; Li-Jun YUAN ; Hong-Shi JIN ; Li-Li WANG
Journal of Experimental Hematology 2022;30(4):1129-1133
OBJECTIVE:
To investigate an improved culturing method for karyotyping analysis, and increase the detection rate of cytogenetic abnormalities in patients with multiple myeloma (MM), so as to provide more powerful information for the clinical diagnosis, prognosis stratification, and individualized treatment of MM patients.
METHODS:
Eighty newly-diagnosed MM patients were enrolled and divided into two groups. In observation group, IL-6 (10 ng/ml) and GM-CSF (30 ng/ml) were supplemented in the culture medium, while no stimulating factor was added in control group. The samples from both groups were cultured for 72 hours under the same conditions, and their karyotypes were analyzed by G-banding. The detection rate of the cytogenetic abnormalities, as well as the corresponding characteristics were compared between the two groups.
RESULTS:
The detection rate of the chromosome aberrations was greatly increased in the observation group compared with the control group, the overall detection rate was 72.5% and 22.5%, respectively, as well as 80.0% and 19.2% in the subgroup of ≤60 years old, 68.0% and 28.6% in the subgroup of > 60 years old, which showed significant statistical differences (P<0.05).
CONCLUSION
The modification of the culturing method with the addition of IL-6 (10 ng/ml) and GM-CSF (30 ng/ml) dual stimulating factors followed by incubation for 72 hours can effectively increase the detection rate of abnormal karyotypes in MM patients.
Chromosome Aberrations
;
Granulocyte-Macrophage Colony-Stimulating Factor
;
Humans
;
Interleukin-6
;
Karyotype
;
Karyotyping
;
Middle Aged
;
Multiple Myeloma/genetics*
5.Aging weakens Th17 cell pathogenicity and ameliorates experimental autoimmune uveitis in mice.
He LI ; Lei ZHU ; Rong WANG ; Lihui XIE ; Jie REN ; Shuai MA ; Weiqi ZHANG ; Xiuxing LIU ; Zhaohao HUANG ; Binyao CHEN ; Zhaohuai LI ; Huyi FENG ; Guang-Hui LIU ; Si WANG ; Jing QU ; Wenru SU
Protein & Cell 2022;13(6):422-445
Aging-induced changes in the immune system are associated with a higher incidence of infection and vaccination failure. Lymph nodes, which filter the lymph to identify and fight infections, play a central role in this process. However, careful characterization of the impact of aging on lymph nodes and associated autoimmune diseases is lacking. We combined single-cell RNA sequencing (scRNA-seq) with flow cytometry to delineate the immune cell atlas of cervical draining lymph nodes (CDLNs) of both young and old mice with or without experimental autoimmune uveitis (EAU). We found extensive and complicated changes in the cellular constituents of CDLNs during aging. When confronted with autoimmune challenges, old mice developed milder EAU compared to young mice. Within this EAU process, we highlighted that the pathogenicity of T helper 17 cells (Th17) was dampened, as shown by reduced GM-CSF secretion in old mice. The mitigated secretion of GM-CSF contributed to alleviation of IL-23 secretion by antigen-presenting cells (APCs) and may, in turn, weaken APCs' effects on facilitating the pathogenicity of Th17 cells. Meanwhile, our study further unveiled that aging downregulated GM-CSF secretion through reducing both the transcript and protein levels of IL-23R in Th17 cells from CDLNs. Overall, aging altered immune cell responses, especially through toning down Th17 cells, counteracting EAU challenge in old mice.
Aging
;
Animals
;
Autoimmune Diseases
;
Disease Models, Animal
;
Granulocyte-Macrophage Colony-Stimulating Factor/metabolism*
;
Mice
;
Mice, Inbred C57BL
;
Th17 Cells/metabolism*
;
Uveitis/pathology*
;
Virulence
6.Isolation,Purification and Differentiation of Hematopoietic Stem Cells into Dendritic Cells in Mouse Lung Tissue.
Yi LI ; Xiao-Xu WANG ; Mei FENG
Journal of Experimental Hematology 2019;27(4):1272-1276
OBJECTIVE:
To explore the method of isolation, purification and differentiation of hematopoietic stem cells (HSCs) into dendritic cells (DC) in lung tissue of mouse, so as to provide theoretical basis and experimental methods for the study of hematopoietic stem cells in mouse lung tissue.
METHODS:
Lung tissues of 4 male C57 mice were digested, separated and purified into mononuclear cells by type I collagenase, type I DNA enzyme and lymphocyte isolation solution. LinSca-1c-Kit cells, which are hematopoietic stem cells (HSCs) were identified and sorted by flow cytometry. Stem cell factor (SCF) and interleukin 3 (IL-3) were added in the obtained HSCs to promote cell proliferation. After discontinuation of SCF and IL-3, granulocyte-macrophage colony stimulating factor (GM-CSF) and IL-4 were added to induce differentiation of HSCs into DCs, and lipopolysaccharide (LPS) was added to promote cell maturation. The morphology of DCs was observed under inverted microscope, the expression of CD80, CD86, CD11c and MII-II on the surface of DCs was analyzed by flow cytometry, and the expression level of IL-12 was detected by enzyme-linked immunosorbent assay (ELISA).
RESULTS:
2419.67±247.59 HSCs were collected from lung tissue mononuclear cells of 4 mice identified by flow cytometry with purity: (7.16±0.43)%. HSCs were amplified 62.34±3.23 times by induction with SCF and IL-3 for 7 days. After induction culture for 15 days, mature dendritic cells were obtained with typical dendrites on the cell surface, the DC expressed dendritic cell-specific surface molecules CDllc (92.62±3.68)%,MHC-II (83.89±6.28)%, CD80 (75.96±5.13)%, CD86(72.07±4.38)%, and the expression level of IL-12 was 136.12±16.59 pg/ml detected by ELISA.
CONCLUSION
There are HSCs in lung tissue, which can be transformed into DCs by cytokine induction and proliferation.
Animals
;
Cell Differentiation
;
Cells, Cultured
;
Dendritic Cells
;
Granulocyte-Macrophage Colony-Stimulating Factor
;
Hematopoietic Stem Cells
;
Male
;
Mice
7.Single-cell Analysis of CAR-T Cell Activation Reveals A Mixed T1/T2 Response Independent of Differentiation.
Iva XHANGOLLI ; Burak DURA ; GeeHee LEE ; Dongjoo KIM ; Yang XIAO ; Rong FAN
Genomics, Proteomics & Bioinformatics 2019;17(2):129-139
The activation mechanism of chimeric antigen receptor (CAR)-engineered T cells may differ substantially from T cells carrying native T cell receptor, but this difference remains poorly understood. We present the first comprehensive portrait of single-cell level transcriptional and cytokine signatures of anti-CD19/4-1BB/CD28/CD3ζ CAR-T cells upon antigen-specific stimulation. Both CD4 helper T (T) cells and CD8 cytotoxic CAR-T cells are equally effective in directly killing target tumor cells and their cytotoxic activity is associated with the elevation of a range of T1 and T2 signature cytokines, e.g., interferon γ, tumor necrotic factor α, interleukin 5 (IL5), and IL13, as confirmed by the expression of master transcription factor genes TBX21 and GATA3. However, rather than conforming to stringent T1 or T2 subtypes, single-cell analysis reveals that the predominant response is a highly mixed T1/T2 function in the same cell. The regulatory T cell activity, although observed in a small fraction of activated cells, emerges from this hybrid T1/T2 population. Granulocyte-macrophage colony stimulating factor (GM-CSF) is produced from the majority of cells regardless of the polarization states, further contrasting CAR-T to classic T cells. Surprisingly, the cytokine response is minimally associated with differentiation status, although all major differentiation subsets such as naïve, central memory, effector memory, and effector are detected. All these suggest that the activation of CAR-engineered T cells is a canonical process that leads to a highly mixed response combining both type 1 and type 2 cytokines together with GM-CSF, supporting the notion that polyfunctional CAR-T cells correlate with objective response of patients in clinical trials. This work provides new insights into the mechanism of CAR activation and implies the necessity for cellular function assays to characterize the quality of CAR-T infusion products and monitor therapeutic responses in patients.
Antigens
;
metabolism
;
CTLA-4 Antigen
;
metabolism
;
Cell Differentiation
;
drug effects
;
Cell Line
;
Cytokines
;
metabolism
;
Cytotoxicity, Immunologic
;
drug effects
;
Granulocyte-Macrophage Colony-Stimulating Factor
;
pharmacology
;
Humans
;
Lymphocyte Activation
;
drug effects
;
immunology
;
Lymphocyte Subsets
;
drug effects
;
metabolism
;
Phenotype
;
Proteomics
;
Receptors, Chimeric Antigen
;
metabolism
;
Single-Cell Analysis
;
methods
;
T-Lymphocytes, Regulatory
;
drug effects
;
metabolism
;
Th1 Cells
;
cytology
;
drug effects
;
Th2 Cells
;
cytology
;
drug effects
;
Transcription, Genetic
;
drug effects
;
Up-Regulation
;
drug effects
8.GM-CSF Enhances Mobilization of Bone Marrow Mesenchymal Stem Cells via a CXCR4-Medicated Mechanism
Jiyoung KIM ; Na Kyeong KIM ; So Ra PARK ; Byung Hyune CHOI
Tissue Engineering and Regenerative Medicine 2019;16(1):59-68
BACKGROUND: This study was conducted to investigate the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on the mobilization of mesenchymal stem cells (MSCs) from the bone marrow (BM) into the peripheral blood (PB) in rats. METHODS: GM-CSF was administered subcutaneously to rats at 50 µg/kg body weight for 5 consecutive days. The BM and PB of rats were collected at 1, 3, and 5 days during the administration for analysis. RESULTS: Upon GM-CSF administration, the number of mononuclear cells increased rapidly at day 1 both in the BM and PB. This number decreased gradually over time in the BM to below the initial amount by day 5, but was maintained at a high level in the PB until day 5. The colony-forming unit-fibroblasts were increased in the PB by 10.3-fold at day 5 of GM-CSF administration, but decreased in the BM. Compared to GM-CSF, granulocyte-colony stimulating factor (G-CSF) stimulated lower levels of MSC mobilization from the BM to the PB. Immunohistochemical analysis revealed that GM-CSF induced a hypoxic and proteolytic microenvironment and increased C-X-C chemokine receptor type 4 (CXCR4) expression in the BM. GM-CSF added to BM MSCs in vitro dose-dependently increased CXCR4 expression and cell migration. G-CSF and stromal cell derived factor-1 (SDF-1) showed similar results in these in vitro assays. Know-down of CXCR4 expression with siRNA significantly abolished GM-CSF- and G-CSF-induced MSC migration in vitro, indicating the involvement of the SDF-1-CXCR4 interaction in the mechanism. CONCLUSION: These results suggest that GM-CSF is a useful tool for mobilizing BM MSCs into the PB.
Animals
;
Anoxia
;
Body Weight
;
Bone Marrow
;
Cell Movement
;
Granulocyte Colony-Stimulating Factor
;
Granulocyte-Macrophage Colony-Stimulating Factor
;
In Vitro Techniques
;
Mesenchymal Stromal Cells
;
Rats
;
RNA, Small Interfering
;
Stromal Cells
9.Pentamidine Inhibits Titanium Particle-Induced Osteolysis In Vivo and Receptor Activator of Nuclear Factor-κB Ligand-Mediated Osteoclast Differentiation In Vitro
Hye Jung IHN ; Kiryeong KIM ; Hye Sung CHO ; Eui Kyun PARK
Tissue Engineering and Regenerative Medicine 2019;16(3):265-273
BACKGROUND: Wear debris-induced osteolysis leads to periprosthetic loosening and subsequent prosthetic failure. Since excessive osteoclast formation is closely implicated in periprosthetic osteolysis, identification of agents to suppress osteoclast formation and/or function is crucial for the treatment and prevention of wear particle-induced bone destruction. In this study, we examined the potential effect of pentamidine treatment on titanium (Ti) particle-induced osteolysis, and receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis. METHODS: The effect of pentamidine treatment on bone destruction was examined in Ti particle-induced osteolysis mouse model. Ti particles were implanted onto mouse calvaria, and vehicle or pentamidine was administered for 10 days. Then, calvarial bone tissue was analyzed using micro-computed tomography and histology. We performed in vitro osteoclastogenesis assay using bone marrow-derived macrophages (BMMs) to determine the effect of pentamidine on osteoclast formation. BMMs were treated with 20 ng/mL RANKL and 10 ng/mL macrophage colony-stimulating factor in the presence or absence of pentamidine. Osteoclast differentiation was determined by tartrate-resistant acid phosphatase staining, real-time polymerase chain reaction, and immunofluorescence staining. RESULTS: Pentamidine administration decreased Ti particle-induced osteoclast formation significantly and prevented bone destruction compared to the Ti particle group in vivo. Pentamidine also suppressed RANKL-induced osteoclast differentiation and actin ring formation markedly, and inhibited the expression of nuclear factor of activated T cell c1 and osteoclast-specific genes in vitro. Additionally, pentamidine also attenuated RANKL-mediated phosphorylation of IκBα in BMMs. CONCLUSION: These results indicate that pentamidine is effective in inhibiting osteoclast formation and significantly attenuates wear debris-induced bone loss in mice.
Acid Phosphatase
;
Actins
;
Animals
;
Bone and Bones
;
Fluorescent Antibody Technique
;
In Vitro Techniques
;
Macrophage Colony-Stimulating Factor
;
Macrophages
;
Mice
;
Osteoclasts
;
Osteolysis
;
Pentamidine
;
Phosphorylation
;
Real-Time Polymerase Chain Reaction
;
Skull
;
Titanium
10.Two Distinct Subsets Are Identified from the Peritoneal Myeloid Mononuclear Cells Expressing both CD11c and CD115
Moah SOHN ; Hye Young NA ; Seul Hye RYU ; Wanho CHOI ; Hyunju IN ; Hyun Soo SHIN ; Ji Soo PARK ; Dahee SHIM ; Sung Jae SHIN ; Chae Gyu PARK
Immune Network 2019;19(3):e15-
To this date, the criteria to distinguish peritoneal macrophages and dendritic cells (DCs) are not clear. Here we delineate the subsets of myeloid mononuclear cells in the mouse peritoneal cavity. Considering phenotypical, functional, and ontogenic features, peritoneal myeloid mononuclear cells are divided into 5 subsets: large peritoneal macrophages (LPMs), small peritoneal macrophages (SPMs), DCs, and 2 MHCII⁺CD11c⁺CD115⁺ subpopulations (i.e., MHCII⁺CD11c⁺CD115⁺CD14⁻CD206⁻ and MHCII⁺CD11c⁺CD115⁺CD14⁺CD206⁺). Among them, 2 subsets of competent Ag presenting cells are demonstrated with distinct functional characteristics, one being DCs and the other being MHCII⁺CD11c⁺CD115⁺CD14⁻CD206⁻ cells. DCs are able to promote fully activated T cells and superior in expanding cytokine producing inflammatory T cells, whereas MHCII⁺CD11c⁺CD115⁺CD14⁻CD206⁻ cells generate partially activated T cells and possess a greater ability to induce Treg under TGF-β and retinoic acid conditions. While the development of DCs and MHCII⁺CD11c⁺CD115⁺CD14⁻CD206⁻ cells are responsive to the treatment of FLT3 ligand and GM-CSF, the number of LPMs, SPMs, and MHCII⁺CD11c⁺CD115⁺CD14⁺CD206⁺ cells are only influenced by the injection of GM-CSF. In addition, the analysis of gene expression profiles among MHCII⁺ peritoneal myeloid mononuclear cells reveals that MHCII⁺CD11c⁺CD115⁺CD14⁺CD206⁺ cells share high similarity with SPMs, whereas MHCII⁺CD11c⁺CD115⁺CD14⁻CD206⁻ cells are related to peritoneal DC2s. Collectively, our study identifies 2 distinct subpopulations of MHCII⁺CD11c⁺CD115⁺ cells, 1) MHCII⁺CD11c⁺CD115⁺CD14⁻CD206⁻ cells closely related to peritoneal DC2s and 2) MHCII⁺CD11c⁺CD115⁺CD14⁺CD206⁺ cells to SPMs.
Animals
;
Antigen Presentation
;
Dendritic Cells
;
Granulocyte-Macrophage Colony-Stimulating Factor
;
Macrophages
;
Macrophages, Peritoneal
;
Mice
;
Peritoneal Cavity
;
T-Lymphocytes
;
Transcriptome
;
Tretinoin

Result Analysis
Print
Save
E-mail