1.Automated machine learning for referable diabetic retinopathy image classification from ultrawide field images
Leandro Victor L. Arcena ; Paolo S. Silva
Philippine Journal of Ophthalmology 2024;49(2):138-143
OBJECTIVE
To develop and evaluate the diagnostic performance of an automated machine learning (AutoML) model for the detection of referable diabetic retinopathy (refDR) in ultrawide field (UWF) retinal images from local Philippine retinal image datasets.
METHODSA Google AutoML Vision model was trained using 2000 UWF images with a 50/50 ratio of refDR/non-refDR. Images were labeled according to the Early Treatment Diabetic Retinopathy Study (ETDRS) severity grading. RefDR was defined as moderate nonproliferative DR or worse. The dataset was split with 80% for training, 10% for validation, and 10% for testing. Two sets of published UWF image sets were used for external validation. Sensitivity and specificity were calculated in accordance with United States Food and Drug Administration (US FDA) performance requirements of 0.85 and 0.825, respectively.
RESULTSThe area under the precision-recall curve was 0.998. External validation against two datasets showed a sensitivity/specificity of 0.88/0.83 (95% CI 0.80-0.94/0.74-0.89) and 0.83/0.80 (95% CI 0.74-0.89/0.72-0.86), respectively. Positive and negative predictive values were 0.81/0.89 (95% CI 0.73-0.89/0.82-0.94) and 0.75/0.86 (95% CI 0.66-0.83/0.79-0.91), respectively.
CONCLUSIONThe pilot performance of the custom AutoML model constructed using local Philippine data approaches US FDA requirements for the diagnosis of referable DR. The ease of use and intuitiveness of the platform, combined with its performance, support the potential of no-code AI in the detection of refDR.
Artificial Intelligence ; Machine Learning
2.Multi-omics fusion analysis models with machine learning predict survival of HER2-negative metastatic breast cancer: a multicenter prospective observational study.
Jiani WANG ; Yuwei LIU ; Renzhi ZHANG ; Zhenyu LIU ; Zongbi YI ; Xiuwen GUAN ; Xinming ZHAO ; Jingying JIANG ; Jie TIAN ; Fei MA
Chinese Medical Journal 2023;136(7):863-865
3.Advances in machine learning for predicting protein functions.
Yanfei CHI ; Chun LI ; Xudong FENG
Chinese Journal of Biotechnology 2023;39(6):2141-2157
Proteins play a variety of functional roles in cellular activities and are indispensable for life. Understanding the functions of proteins is crucial in many fields such as medicine and drug development. In addition, the application of enzymes in green synthesis has been of great interest, but the high cost of obtaining specific functional enzymes as well as the variety of enzyme types and functions hamper their application. At present, the specific functions of proteins are mainly determined through tedious and time-consuming experimental characterization. With the rapid development of bioinformatics and sequencing technologies, the number of protein sequences that have been sequenced is much larger than those can be annotated, thus developing efficient methods for predicting protein functions becomes crucial. With the rapid development of computer technology, data-driven machine learning methods have become a promising solution to these challenges. This review provides an overview of protein function and its annotation methods as well as the development history and operation process of machine learning. In combination with the application of machine learning in the field of enzyme function prediction, we present an outlook on the future direction of efficient artificial intelligence-assisted protein function research.
Artificial Intelligence
;
Machine Learning
;
Proteins/genetics*
;
Computational Biology/methods*
;
Drug Development
4.Automatic sleep staging algorithm for stochastic depth residual networks based on transfer learning.
Yunzhi TIAN ; Qiang ZHOU ; Wan LI
Journal of Biomedical Engineering 2023;40(2):286-294
The existing automatic sleep staging algorithms have the problems of too many model parameters and long training time, which in turn results in poor sleep staging efficiency. Using a single channel electroencephalogram (EEG) signal, this paper proposed an automatic sleep staging algorithm for stochastic depth residual networks based on transfer learning (TL-SDResNet). Firstly, a total of 30 single-channel (Fpz-Cz) EEG signals from 16 individuals were selected, and after preserving the effective sleep segments, the raw EEG signals were pre-processed using Butterworth filter and continuous wavelet transform to obtain two-dimensional images containing its time-frequency joint features as the input data for the staging model. Then, a ResNet50 pre-trained model trained on a publicly available dataset, the sleep database extension stored in European data format (Sleep-EDFx) was constructed, using a stochastic depth strategy and modifying the output layer to optimize the model structure. Finally, transfer learning was applied to the human sleep process throughout the night. The algorithm in this paper achieved a model staging accuracy of 87.95% after conducting several experiments. Experiments show that TL-SDResNet50 can accomplish fast training of a small amount of EEG data, and the overall effect is better than other staging algorithms and classical algorithms in recent years, which has certain practical value.
Humans
;
Sleep Stages
;
Algorithms
;
Sleep
;
Wavelet Analysis
;
Electroencephalography/methods*
;
Machine Learning
5.Research on eye movement data classification using support vector machine with improved whale optimization algorithm.
Yinhong SHEN ; Chang ZHANG ; Lin YANG ; Yuanyuan LI ; Xiujuan ZHENG
Journal of Biomedical Engineering 2023;40(2):335-342
When performing eye movement pattern classification for different tasks, support vector machines are greatly affected by parameters. To address this problem, we propose an algorithm based on the improved whale algorithm to optimize support vector machines to enhance the performance of eye movement data classification. According to the characteristics of eye movement data, this study first extracts 57 features related to fixation and saccade, then uses the ReliefF algorithm for feature selection. To address the problems of low convergence accuracy and easy falling into local minima of the whale algorithm, we introduce inertia weights to balance local search and global search to accelerate the convergence speed of the algorithm and also use the differential variation strategy to increase individual diversity to jump out of local optimum. In this paper, experiments are conducted on eight test functions, and the results show that the improved whale algorithm has the best convergence accuracy and convergence speed. Finally, this paper applies the optimized support vector machine model of the improved whale algorithm to the task of classifying eye movement data in autism, and the experimental results on the public dataset show that the accuracy of the eye movement data classification of this paper is greatly improved compared with that of the traditional support vector machine method. Compared with the standard whale algorithm and other optimization algorithms, the optimized model proposed in this paper has higher recognition accuracy and provides a new idea and method for eye movement pattern recognition. In the future, eye movement data can be obtained by combining it with eye trackers to assist in medical diagnosis.
Animals
;
Support Vector Machine
;
Whales
;
Eye Movements
;
Algorithms
6.Advances in heart failure clinical research based on deep learning.
Yingpeng LEI ; Siru LIU ; Yuxuan WU ; Chuan LI ; Jialin LIU
Journal of Biomedical Engineering 2023;40(2):373-377
Heart failure is a disease that seriously threatens human health and has become a global public health problem. Diagnostic and prognostic analysis of heart failure based on medical imaging and clinical data can reveal the progression of heart failure and reduce the risk of death of patients, which has important research value. The traditional analysis methods based on statistics and machine learning have some problems, such as insufficient model capability, poor accuracy due to prior dependence, and poor model adaptability. In recent years, with the development of artificial intelligence technology, deep learning has been gradually applied to clinical data analysis in the field of heart failure, showing a new perspective. This paper reviews the main progress, application methods and major achievements of deep learning in heart failure diagnosis, heart failure mortality and heart failure readmission, summarizes the existing problems and presents the prospects of related research to promote the clinical application of deep learning in heart failure clinical research.
Humans
;
Artificial Intelligence
;
Deep Learning
;
Heart Failure/diagnosis*
;
Machine Learning
;
Diagnostic Imaging
7.A method for photoplethysmography signal quality assessment fusing multi-class features with multi-scale series information.
Yusheng QI ; Aihua ZHANG ; Yurun MA ; Huidong WANG ; Jiaqi LI ; Cheng CHEN
Journal of Biomedical Engineering 2023;40(3):536-543
Photoplethysmography (PPG) is often affected by interference, which could lead to incorrect judgment of physiological information. Therefore, performing a quality assessment before extracting physiological information is crucial. This paper proposed a new PPG signal quality assessment by fusing multi-class features with multi-scale series information to address the problems of traditional machine learning methods with low accuracy and deep learning methods requiring a large number of samples for training. The multi-class features were extracted to reduce the dependence on the number of samples, and the multi-scale series information was extracted by a multi-scale convolutional neural network and bidirectional long short-term memory to improve the accuracy. The proposed method obtained the highest accuracy of 94.21%. It showed the best performance in all sensitivity, specificity, precision, and F1-score metrics, compared with 6 quality assessment methods on 14 700 samples from 7 experiments. This paper provides a new method for quality assessment in small samples of PPG signals and quality information mining, which is expected to be used for accurate extraction and monitoring of clinical and daily PPG physiological information.
Photoplethysmography
;
Machine Learning
;
Neural Networks, Computer
8.Recent research on machine learning in the diagnosis and treatment of necrotizing enterocolitis in neonates.
Cheng CUI ; Fei-Long CHEN ; Lu-Quan LI
Chinese Journal of Contemporary Pediatrics 2023;25(7):767-773
Necrotizing enterocolitis (NEC), with the main manifestations of bloody stool, abdominal distension, and vomiting, is one of the leading causes of death in neonates, and early identification and diagnosis are crucial for the prognosis of NEC. The emergence and development of machine learning has provided the potential for early, rapid, and accurate identification of this disease. This article summarizes the algorithms of machine learning recently used in NEC, analyzes the high-risk predictive factors revealed by these algorithms, evaluates the ability and characteristics of machine learning in the etiology, definition, and diagnosis of NEC, and discusses the challenges and prospects for the future application of machine learning in NEC.
Infant, Newborn
;
Humans
;
Enterocolitis, Necrotizing/therapy*
;
Infant, Newborn, Diseases
;
Prognosis
;
Gastrointestinal Hemorrhage/diagnosis*
;
Machine Learning
9.An Atrial Fibrillation Classification Method Study Based on BP Neural Network and SVM.
Chenqin LIU ; Gaozang LIN ; Jingjing ZHOU ; Jilun YE ; Xu ZHANG
Chinese Journal of Medical Instrumentation 2023;47(3):258-263
Atrial fibrillation is a common arrhythmia, and its diagnosis is interfered by many factors. In order to achieve applicability in diagnosis and improve the level of automatic analysis of atrial fibrillation to the level of experts, the automatic detection of atrial fibrillation is very important. This study proposes an automatic detection algorithm for atrial fibrillation based on BP neural network (back propagation network) and support vector machine (SVM). The electrocardiogram (ECG) segments in the MIT-BIH atrial fibrillation database are divided into 10, 32, 64, and 128 heartbeats, respectively, and the Lorentz value, Shannon entropy, K-S test value and exponential moving average value are calculated. These four characteristic parameters are used as the input of SVM and BP neural network for classification and testing, and the label given by experts in the MIT-BIH atrial fibrillation database is used as the reference output. Among them, the use of atrial fibrillation in the MIT-BIH database, the first 18 cases of data are used as the training set, and the last 7 cases of data are used as the test set. The results show that the accuracy rate of 92% is obtained in the classification of 10 heartbeats, and the accuracy rate of 98% is obtained in the latter three categories. The sensitivity and specificity are both above 97.7%, which has certain applicability. Further validation and improvement in clinical ECG data will be done in next study.
Humans
;
Atrial Fibrillation/diagnosis*
;
Support Vector Machine
;
Heart Rate
;
Algorithms
;
Neural Networks, Computer
;
Electrocardiography
10.Development and Application of Medical Imaging Analysis Platform Based on Radiomics and Machine Learning Technologies.
Yonggen ZHAO ; Zhu ZHU ; Zhuo YU ; Xiangfei CHAI ; Gang YU
Chinese Journal of Medical Instrumentation 2023;47(3):272-277
OBJECTIVE:
In order to solve the technical problems, clinical researchers face the process of medical imaging analysis such as data labeling, feature extraction and algorithm selection, a medical imaging oriented multi-disease research platform based on radiomics and machine learning technology was designed and constructed.
METHODS:
Five aspects including data acquisition, data management, data analysis, modeling and data management were considered. This platform provides comprehensive functions such as data retrieve and data annotation, image feature extraction and dimension reduction, machine learning model running, results validation, visual analysis and automatic generation of analysis reports, thus an integrated solution for the whole process of radiomics analysis has been generated.
RESULTS:
Clinical researchers can use this platform for the whole process of radiomics and machine learning analysis for medical images, and quickly produce research results.
CONCLUSIONS
This platform greatly shortens the time for medical image analysis research, decreasing the work difficulty of clinical researchers, as well as significantly promoting their working efficiency.
Machine Learning
;
Diagnostic Imaging
;
Algorithms
;
Radiography


Result Analysis
Print
Save
E-mail