1.Modulation of colonic DNA methyltransferase by mild moxibustion and electroacupuncture in ulcerative colitis TET2 knockout mice
Gege FENG ; Yue ZHANG ; Huangan WU ; Lu ZHU ; Hongxiao XU ; Zhe MA ; Yan HUANG
Digital Chinese Medicine 2025;8(1):100-110
Objective:
To investigate the mechanism of in alleviating colonic mucosal inflammation in ten-eleven translocation (TET) protein 2 gene knockout (TET2-/-) mice with ulcerative colitis (UC) by regulating DNA methyltransferase (DNMT) and DNA hydroxymethylase.
Methods:
Male specific pathogen-free (SPF) grade C57BL/6J wild-type (WT) mice (n = 8) and TET2-/- mice (n = 20) were used to establish UC models by freely drinking 3% dextran sulfate sodium solution for 7 d. After UC model validation through histopathological examination in two mice from each type, the remaining mice were divided into four groups (n = 6 in each group): WT model (WT + UC), TET2-/- model (TET2-/- + UC), TET2-/- mild moxibustion (TET2-/- + MM), and TET2-/- electroacupuncture (TET2-/- + EA) groups. TET2-/- + MM group received mild moxibustion on Tianshu (ST25) and Qihai (CV6) for 10 min daily for 7 d. The TET2-/- + EA group also applied electroacupuncture (1 mA, 2/100 Hz) at the same acupoints for 10 min daily for 7 d. The disease activity index (DAI) scores of each group of mice were accessed daily. The colon lengths of mice in groups were measured following intervention. The pathological changes in the colon tissues were observed with hematoxylin and eosin (HE) staining. The concentrations of interleukin (IL)-6, C-C motif chemokine 17 (CCL17), and C-X-C motif chemokine ligand 10 (CXCL10) in serum were detected by enzyme-linked immunosorbent assay (ELISA). The expression of DNMT proteins (DNMT1, DNMT3A, and DNMT3B) in the colon tissues was detected by immunohistochemistry. The expression of 5-methylcytosine (5-mC), 5-hydroxymethylcytosine (5-hmC), histone deacetylase 2 (HDAC2), and DNA hydroxymethylase family proteins (TET 1 and TET3) was detected using immunofluorescence, which also determined the co-localization of TET1 and IL-6 protein.
Results:
Compared with WT + UC group, TET2-/- + UC group exhibited significantly higher DAI scores and shorter colon lengths (P < 0.01). Both mild moxibustion and electroacupuncture significantly decreased DAI scores and ameliorated colon shortening in TET2-/- mice (P < 0.001). Histopathological scores of TET2-/- + UC mice were significantly higher than those of WT + UC group (P < 0.001) and were significantly reduced after both mild moxibustion and electroacupuncture interventions (P < 0.001). Serum levels of IL-6, CCL17, and CXCL10 were significantly elevated in TET2-/- + UC group compared with WT + UC group (P < 0.001). Mild moxibustion significantly reduced IL-6, CCL17, and CXCL10 levels (P < 0.001, P < 0.001, and P < 0.01, respectively), while electroacupuncture also significantly reduced IL-6, CCL17, and CXCL10 levels (P < 0.05, P < 0.01, and P < 0.01, respectively). TET2-/- + UC mice showed increased expression levels of DNMT1, DNMT3A , DNMT3B, and 5-mC (P < 0.05, P < 0.01 and P < 0.001, respectively), with decreased expression levels of TET1, TET3, 5-hmC, and HDAC2 (P < 0.001). Mild moxibustion significantly reduced DNMT1, DNMT3B, and 5-mC levels (P < 0.05, P < 0.01, and P < 0.001, respectively), while increasing expression levels of TET1, TET3, 5-hmC, and HDAC2 (P < 0.001, P < 0.001, P < 0.05, and P < 0.001, respectively). Electroacupuncture significantly decreased 5-mC and DNMT3B levels (P < 0.001 and P < 0.01, respectively) and increased 5-hmC and HDAC2 levels (P < 0.05 and P < 0.001, respectively), but did not significantly affect TET1 and TET3 expression (P > 0.05). Compared with TET2-/- + MM group, TET2-/- + EA group showed significantly higher 5-mC expression (P < 0.001). TET2-/- + UC group exhibited markedly increased IL-6 expression and higher co-localization of TET1 and IL-6 in mucosal epithelium, whereas minimal IL-6 expression was observed in the other groups.
Conclusion
Mild moxibustion and electroacupuncture significantly ameliorate colonic inflammation exacerbated by TET2 deficiency in UC mice via epigenetic modulation. Distinct mechanisms exist between the two interventions: mild moxibustion regulates both DNMT and hydroxymethylase, whereas electroacupuncture primarily affects DNMT.
2.Inhibitory effect of hydroxy safflower yellow A on neuronal pyroptosis after glucose-oxygen deprivation/reglucose-reoxygenation treatment
Zeqian WANG ; Yanzhe DUAN ; Yige WU ; Dong MA ; Jianjun HUANG ; Yuqing YAN ; Lijuan SONG
Chinese Journal of Tissue Engineering Research 2025;29(19):4044-4051
BACKGROUND:Hydroxy safflower yellow A has anti-ischemia,anti-oxidation,anti-thrombotic and anti-inflammatory effects.Whether it affects neuronal pyroptosis after glucose-oxygen deprivation/reglucose-reoxygenation is still unclear. OBJECTIVE:To investigate the protective effect of hydroxy safflower yellow A on neuronal pyroptosis and its mechanism. METHODS:HT22 cells in logarithmic growth phase were randomly divided into five groups:normal group,model group,hydroxy safflower yellow A group,colivelin group,and colivelin+hydroxy safflower yellow A group.HT22 cells were treated with glucose-oxygen deprivation/reglucose-reoxygenation to establish neuronal pyroptosis model,and then treated with STAT3 agonist Colivelin and hydroxy safflower yellow A.JC-1 probe was employed to assess changes in mitochondrial membrane potential.Reactive oxygen species kit was used to determine the content of reactive oxygen species in cells.GSDMD/TUNEL staining was conducted to observe cell pyroptosis.Immunofluorescence analysis was performed to detect STAT3 and GSDMD protein expression.RT-PCR was utilized for assessing mRNA expression levels of STAT3,NLRP3,and Caspase-1.Western blot assay was utilized to measure the protein expression levels of p-STAT3,NLRP3,GSDMD,Cleaved-caspase-1,and interleukin-1β. RESULTS AND CONCLUSION:(1)Compared with the normal group,the number of pyroptotic cells increased in HT22 cells in the model group along with a significant increase in protein expression levels of p-STAT3,NLRP3,Cleaved-caspase-1,GSDMD,and interleukin-1β.Compared with the model group,the number of pyroptotic cells reduced,and the expression of pyroptosis-related proteins significantly decreased in the hydroxy safflower yellow A group.(2)In comparison with the model group,pyroptosis worsened in the colivelin group where mitochondrial membrane potential decreased along with elevated reactive oxygen species content and increased mRNA expression levels of STAT3,NLRP3,and Caspase-1,as well as increased protein expression levels of p-STAT3,NLRP3,GSDMD,Cleaved-caspase-1,and interleukin-1β.Compared with the Colivelin group,above indexes were improved in the colivelin+hydroxy safflower yellow A group.These results suggest that hydroxy safflower yellow A plays a neuroprotective role through STAT3 signaling pathway to inhibit HT22 pyroptosis after glucose-oxygen deprivation/reglucose-reoxygenation treatment.
3.Mechanism of Buzhong Yiqitang in Repairing Brain Developmental Abnormalities in Offspring of Pregnant Rats with Subclinical Hypothyroidism
Yan MA ; Xiaojiao LYU ; Yangling HUANG ; Xiande MA ; Tianshu GAO ; Peiwei CONG ; Wei CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(16):24-34
ObjectiveTo evaluate the pharmacological effect of Buzhong Yiqitang on brain development in offspring of rats with subclinical hypothyroidism (SCH) during pregnancy and explore its potential mechanism. MethodsForty-eight SPF female SD rats were divided into sham operation group (n=8) and model group (n=40). The rat model of subclinical hypothyroidism (SCH) was constructed by total thyroidectomy combined with postoperative subcutaneous injection of levothyroxine (L-T4). The modeled rats were randomly allocated into model, low-, medium-, and high-dose (5.58, 11.16, 22.32 g∙kg-1, respectively) Buzhong Yiqitang, and euthyrox (4.5×10-6 g∙kg-1) groups, with 8 rats in each group. These rats were co-housed with normal male rats for mating. Drug administration started 2 weeks before pregnancy and continued until delivery. Hematoxylin-eosin staining and Golgi-cox staining were used to observe pathological changes in the hippocampal tissue of offspring rats. Western blot was employed to detect the effects of Buzhong Yiqitang on the protein levels of cytochrome C oxidase subunitⅠ (COX)Ⅰ and COXⅣ in the hippocampal tissue of offspring rats. A colorimetric method was used to measure the mitochondrial adenosine triphosphate (ATP) content in the hippocampal tissue of offspring rats. For in vitro experiments, a hydrogen peroxide (H2O2)-induced oxidative damage model was established with rat pheochromocytoma cells (PC12). Interventions included the DNA methyltransferase inhibitor (SGI-1027), Buzhong Yiqitang-medicated serum, and euthyrox-medicated serum. The cell counting kit-8 (CCK-8) assay was used to examine the effect of Buzhong Yiqitang on cell proliferation. Immunofluorescence staining was performed to evaluate the effect on tubulin beta 3 class Ⅲ (TUBB3) in PC12 cells. Western blot was employed to assess the effects on the protein levels of DNA methyltransferases (TETs and DNMTs) in PC12 cells. The fluorescent probe 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA), luciferase assay, and JC-1 staining were employed to assess the effects of Buzhong Yiqitang on the levels of reactive oxygen species (ROS) and ATP and the mitochondrial membrane potential in PC12 cells. ResultsCompared with the sham group, the model group showed a reduction in the number of hippocampal neurons, incomplete pyramidal cell bodies, loose arrangement, shortened average dendrite length, decreased dendritic complexity and dendritic spine density, and reduced expression levels of COXⅠ and COXⅣ and content of ATP in the brain tissue (P<0.05, P<0.01). Compared with the model group, after administration of Buzhong Yiqitang and euthyrox, hippocampal neurons exhibited regular arrangement, complete morphology, extended dendrite, increased dendritic complexity and dendritic spine density, and restored expression levels of COXⅠ and COXⅣ and content of ATP (P<0.05, P<0.01), with the medium-dose Buzhong Yiqitang group showing the best therapeutic effect. In the PC12 cell model of oxidative damage, Buzhong Yiqitang increased the cell viability (P<0.01), enhanced neuronal differentiation, down-regulated the expression levels of DNMTs (P<0.05), up-regulated the expression levels of TETs (P<0.05), decreased the ROS content (P<0.01), and restored the ATP content and mitochondrial membrane potential (P<0.01). ConclusionBuzhong Yiqitang protects brain development in offspring of pregnant rats with SCH. It mainly acts on the oxidative stress and mitochondrial dysfunction resulted from abnormal mtDNA methylation, with DNMTs and TETs as the key proteins for its effects.
4.Association of copy number variation in X chromosome-linked PNPLA4 with heterotaxy and congenital heart disease
Han GAO ; Xianghui HUANG ; Weicheng CHEN ; Zhiyu FENG ; Zhengshan ZHAO ; Ping LI ; Chaozhong TAN ; Jinxin WANG ; Quannan ZHUANG ; Yuan GAO ; Shaojie MIN ; Qinyu YAO ; Maoxiang QIAN ; Xiaojing MA ; Feizhen WU ; Weili YAN ; Wei SHENG ; Guoying HUANG
Chinese Medical Journal 2024;137(15):1823-1834
Background::Heterotaxy (HTX) is a thoracoabdominal organ anomaly syndrome and commonly accompanied by congenital heart disease (CHD). The aim of this study was to analyze rare copy number variations (CNVs) in a HTX/CHD cohort and to examine the potential mechanisms contributing to HTX/CHD.Methods::Chromosome microarray analysis was used to identify rare CNVs in a cohort of 120 unrelated HTX/CHD patients, and available samples from parents were used to confirm the inheritance pattern. Potential candidate genes in CNVs region were prioritized via the DECIPHER database, and PNPLA4 was identified as the leading candidate gene. To validate, we generated PNPLA4-overexpressing human induced pluripotent stem cell lines as well as pnpla4-overexpressing zebrafish model, followed by a series of transcriptomic, biochemical and cellular analyses. Results::Seventeen rare CNVs were identified in 15 of the 120 HTX/CHD patients (12.5%). Xp22.31 duplication was one of the inherited CNVs identified in this HTX/CHD cohort, and PNPLA4 in the Xp22.31 was a candidate gene associated with HTX/CHD. PNPLA4 is expressed in the lateral plate mesoderm, which is known to be critical for left/right embryonic patterning as well as cardiomyocyte differentiation, and in the neural crest cell lineage. Through a series of in vivo and in vitro analyses at the molecular and cellular levels, we revealed that the biological function of PNPLA4 is importantly involved in the primary cilia formation and function via its regulation of energy metabolism and mitochondria-mediated ATP production. Conclusions::Our findings demonstrated a significant association between CNVs and HTX/CHD. Our data strongly suggested that an increased genetic dose of PNPLA4 due to Xp22.31 duplication is a disease-causing risk factor for HTX/CHD.
5.Study of lncRNA-miRNA-mRNA ceRNA regulatory network mediated by serum exosomes in coronary heart disease and prediction and experimental validation of potential target herbal medicines
Lu MA ; Lei YANG ; Huang DING ; Wan-Yu LI ; Wei TAN ; Yan-Ling LI ; Yan-Yan ZHANG ; Xiao-Dan LIU ; Zhao-Wen ZENG ; Chang-Qing DENG ; Wei ZHANG
Chinese Pharmacological Bulletin 2024;40(6):1153-1164
Aim To analyze serum exosome sequencing data from patients with coronary heart disease(CHD)and normal subjects by using bioinformatics-related methods to construct a competitive endogenous ln-cRNA-miRNA-mRNA(ceRNA)regulatory network,to mine the predicted potential Chinese medicines,and to perform preliminary validation of the biological processes and core Chinese medicines involved in the ceRNA network.Methods We used exoRbase data-base to obtain the expression matrix of differential genes,combined with the raw letter method to con-struct the ceRNA network,and performed GO analysis and KEGG analysis on the differential mRNAs in the network,and used COREMINE database to predict the biological processes and core target genes involved in the ceRNA network,and to screen the herbal medi-cines with potential therapeutic effects;AVECs oxida-tive damage cell model was constructed in vitro,and the cytoskeleton,tube-forming function,cell prolifera-tion,LDH leakage rate,ROS level and p-AKT,AKT,p-PI3K and AKT protein expression were examined to verify the action pathways and targets of the core Chi-nese medicine Salvia miltiorrhiza for the treatment of coronary heart disease.Results Compared with nor-mal subjects,395 mRNAs,80 miRNAs,60 lncRNA differential genes,and 80 miRNAs were predicted in serum exosomes of coronary heart disease,and the constructed ceRNA sub-network,mainly consisted of 21 lncRNAs,80 miRNAs,and 82 mRNAs;AKT1,VEGFA,IL1B and other genes in the network.The abnormally expressed mRNAs were involved in biologi-cal processes such as oxidative stress and signaling pathways such as PI3 K/Akt,and Dan Shen,Chuanx-iong and Panax notoginseng were most closely related to exosome-mediated biological processes and core genes in coronary heart disease.The active ingredients of tanshinone ⅡA,the core Chinese medicine,could pro-mote vascular endothelial cell proliferation,tube for-mation,skeleton formation and repair,reduce LDH leakage rate and ROS level,and promote the expres-sion of p-AKT and p-PI3K protein.Conclusion There is a complex ceRNA regulatory network trans-duction in coronary artery disease serum exosomes,and traditional Chinese medicine can be used to treat CHD through multi-target intervention,and Dan Shen,Chuanxiong and Panax notoginseng are expected to be candidate sources of traditional Chinese medicine,a-mong which the active ingredient of Dan Shen,tanshi-none ⅡA,activates PI3 K/Akt signaling pathway to play a protective role against oxidative stress-injured cells,and treats CHD.
6.Effect of total flavonoids of Dracocephalum moldavica on TMAO-mediated JAK/STAT axis against atherosclerosis in rats and inflammation in RAW264.7 cells
Wen-Jiang CAO ; Chun-Yan DU ; Chuan-Sheng HUANG ; Yun-Li ZHAO ; Xiao-Li MA ; Yong YUAN ; Xin-Chun WANG
Chinese Pharmacological Bulletin 2024;40(9):1766-1772
Aim To investigate the protective effect of total flavonoids of Dracocephalum moldavica(TFDM)on atherosclerosis in rats and the inflammation of mouse macrophage RAW264.7 aggravated by trimeth-ylamine N-oxide(TMAO)and its possible mecha-nism.Methods The AS model of SD rats was estab-lished by high-fat diet feeding combined with intraper-itoneal injection of vitamin D3.The rats were divided into control group,model group,simvastatin group(15 mg·kg-1)and TFDM group(60,30,15 mg·kg-1).Biochemical method was used to detect the levels of se-rum total cholesterol(TC),triglyceride(TG)and low density lipoprotein cholesterol(LDL-C).HE staining was used to detect the pathological changes of aortic tissue.ELISA kit was used to detect the expression of TMAO,IL-1β,IL-6 in serum and TNF-α in liver tis-sue.Western blot was used to detect the expression of JAK,STAT and TNF-α protein in aorta.In addition,RAW264.7 macrophages were cultured in vitro,and LPS+TMAO was used to establish a macrophage in-flammation model,which was intervened by TFDM(100,50,25 mg·L-1).CCK-8 was used to determine cell viability and proliferation,and RT-qPCR was used to detect the expression of TNF-α,IL-6,JAK and STAT mRNA in cells.Results TFDM could significantly down-regulate the levels of serum TC,TG,LDL-C,ser-um TMAO,IL-1β,IL-6 and liver TNF-α,reduce aortic plaque deposition,and down-regulate the protein ex-pression of TNF-α,JAK and STAT in aorta.In addi-tion,TFDM intervention can significantly down-regulate the expression of TNF-α,IL-6,JAK,STAT mRNA and the expression of JAK,STAT protein.Conclusion TFDM can reduce the content of TMAO in serum,in-hibit JAK/STAT inflammatory signaling pathway and slow down the occurrence of inflammation,playing an anti-AS role.
7.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
8.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
9.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
10.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.

Result Analysis
Print
Save
E-mail