1.Exploring Mechanism of Yiqi Huoxue Jiedu Formula in Alleviating Immune Cell Exhaustion in Sepsis Based on Transcriptomics and Metabolomics
Rui CHEN ; Qiusha PAN ; Kaiqiang ZHONG ; Shuqi MA ; Wei HUANG ; Jiahua LAI ; Ruifeng ZENG ; Xiaotu XI ; Jun LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):109-118
ObjectiveTo observe the effects of Yiqi Huoxue Jiedu formula(YHJF) on immune cell exhaustion in the spleen of septic mice and to explore and validate its potential intervention targets. MethodsMice were randomly divided into the sham-operated, model, low-dose YHJF(4.1 g·kg-1), and high-dose YHJF(8.2 g·kg-1) groups. Except for the sham-operated group, a cecal ligation and puncture(CLP) procedure was performed to establish a mouse sepsis model. The treatment groups received oral administration of the corresponding doses, while the sham-operated and model groups received an equal volume of physiological saline. After the intervention, the 7-day survival rate of each group was recorded, and spleen samples were collected 72 h post-intervention, and the spleen index was calculated. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate(dUTP) nick end labeling(TUNEL) staining was used to detect apoptosis in spleen cells. Enzyme-linked immunosorbent assay(ELISA) was performed to measure the levels of interleukin(IL)-4 and IL-10 in the serum. Transcriptomics and metabolomics were used to screen for differentially expressed genes(DEGs) and differential metabolites in the spleen, followed by bioinformatics analysis to identify key targets. Real-time quantitative polymerase chain reaction(Real-time PCR), flow cytometry, and multiplex immunofluorescence were used to verify the expressions of key genes and proteins. ResultsThe high-dose YHJF group significantly improved the 7-day survival rate of septic mice(P0.05). Compared with the sham-operated group, the model group showed a significant increase in apoptosis of spleen cells and a decrease in the spleen index at 72 h post-modeling, with markedly elevated peripheral serum IL-4 and IL-10 levels(P0.01). Compared with the model group, the high-dose YHJF group showed a reduction in apoptosis of spleen cells, an increase in the spleen index, and a significant decrease in peripheral serum IL-4 and IL-10 levels(P0.05). Spleen transcriptomics identified 255 DEGs between groups, potentially serving as intervention targets for YHJF. Gene Ontology(GO) enrichment analysis revealed that DEGs were mainly involved in biological processes such as natural killer(NK) cell-mediated positive immune regulation, cell killing, cytokine production, positive regulation of innate immune cells, and interferon production. Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis showed that DEGs were mainly involved in cytokine-cytokine receptor interactions, viral protein interactions with cytokines and cytokine receptors, chemokine signaling pathway, and nuclear transcription factor-κB(NF-κB) signaling pathway. Protein-protein interaction(PPI) network analysis identified CD160, granzyme B(GZMB), and chemokine ligand 4(CCL4) as key targets for YHJF in treating sepsis. Metabolomics identified 46 differential metabolites that were significantly reversed by YHJF intervention, and combined transcriptomics and metabolomics analysis identified 17 differential metabolites closely related to CD160. Pathway enrichment revealed that these metabolites were mainly involved in glycerophospholipid metabolism, arachidonic acid metabolism, glycosylphosphatidylinositol(GPI) anchor biosynthesis, linoleic acid metabolism, and α-linolenic acid metabolism pathways. Verification results showed that, compared with the sham-operated group, the model group exhibited significantly elevated CD160 mRNA expression level in the spleen, along with markedly decreased CCL4 and GZMB mRNA expression, and had a significant increase in CD160 expression on the surface of natural killer T(NKT) cells in the spleen(P0.01). Compared with the model group, the high-dose YHJF group had a significant decrease in CD160 mRNA expression in the spleen, a significant increase in CCL4 and GZMB mRNA expressions. Further flow cytometry and immunofluorescence revealed that compared with the sham-operated group, CD160 expression on the surface of splenic NKT cells in the model group was significantly increased(P0.01), while high-dose YHJF intervention significantly reduced CD160 expression(P0.01). ConclusionYHJF may alleviate NKT cell exhaustion in sepsis by downregulating the expression of the negative co-stimulatory molecule CD160, and this regulatory effect is closely related to fatty acid metabolism pathways. This study provides new insights and targets for further exploration of strengthening vital Qi and detoxifying strategy to improve immune cell exhaustion in acute deficiency syndrome of sepsis.
2.Exploring Mechanism of Yiqi Huoxue Jiedu Formula in Alleviating Immune Cell Exhaustion in Sepsis Based on Transcriptomics and Metabolomics
Rui CHEN ; Qiusha PAN ; Kaiqiang ZHONG ; Shuqi MA ; Wei HUANG ; Jiahua LAI ; Ruifeng ZENG ; Xiaotu XI ; Jun LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):109-118
ObjectiveTo observe the effects of Yiqi Huoxue Jiedu formula(YHJF) on immune cell exhaustion in the spleen of septic mice and to explore and validate its potential intervention targets. MethodsMice were randomly divided into the sham-operated, model, low-dose YHJF(4.1 g·kg-1), and high-dose YHJF(8.2 g·kg-1) groups. Except for the sham-operated group, a cecal ligation and puncture(CLP) procedure was performed to establish a mouse sepsis model. The treatment groups received oral administration of the corresponding doses, while the sham-operated and model groups received an equal volume of physiological saline. After the intervention, the 7-day survival rate of each group was recorded, and spleen samples were collected 72 h post-intervention, and the spleen index was calculated. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate(dUTP) nick end labeling(TUNEL) staining was used to detect apoptosis in spleen cells. Enzyme-linked immunosorbent assay(ELISA) was performed to measure the levels of interleukin(IL)-4 and IL-10 in the serum. Transcriptomics and metabolomics were used to screen for differentially expressed genes(DEGs) and differential metabolites in the spleen, followed by bioinformatics analysis to identify key targets. Real-time quantitative polymerase chain reaction(Real-time PCR), flow cytometry, and multiplex immunofluorescence were used to verify the expressions of key genes and proteins. ResultsThe high-dose YHJF group significantly improved the 7-day survival rate of septic mice(P0.05). Compared with the sham-operated group, the model group showed a significant increase in apoptosis of spleen cells and a decrease in the spleen index at 72 h post-modeling, with markedly elevated peripheral serum IL-4 and IL-10 levels(P0.01). Compared with the model group, the high-dose YHJF group showed a reduction in apoptosis of spleen cells, an increase in the spleen index, and a significant decrease in peripheral serum IL-4 and IL-10 levels(P0.05). Spleen transcriptomics identified 255 DEGs between groups, potentially serving as intervention targets for YHJF. Gene Ontology(GO) enrichment analysis revealed that DEGs were mainly involved in biological processes such as natural killer(NK) cell-mediated positive immune regulation, cell killing, cytokine production, positive regulation of innate immune cells, and interferon production. Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis showed that DEGs were mainly involved in cytokine-cytokine receptor interactions, viral protein interactions with cytokines and cytokine receptors, chemokine signaling pathway, and nuclear transcription factor-κB(NF-κB) signaling pathway. Protein-protein interaction(PPI) network analysis identified CD160, granzyme B(GZMB), and chemokine ligand 4(CCL4) as key targets for YHJF in treating sepsis. Metabolomics identified 46 differential metabolites that were significantly reversed by YHJF intervention, and combined transcriptomics and metabolomics analysis identified 17 differential metabolites closely related to CD160. Pathway enrichment revealed that these metabolites were mainly involved in glycerophospholipid metabolism, arachidonic acid metabolism, glycosylphosphatidylinositol(GPI) anchor biosynthesis, linoleic acid metabolism, and α-linolenic acid metabolism pathways. Verification results showed that, compared with the sham-operated group, the model group exhibited significantly elevated CD160 mRNA expression level in the spleen, along with markedly decreased CCL4 and GZMB mRNA expression, and had a significant increase in CD160 expression on the surface of natural killer T(NKT) cells in the spleen(P0.01). Compared with the model group, the high-dose YHJF group had a significant decrease in CD160 mRNA expression in the spleen, a significant increase in CCL4 and GZMB mRNA expressions. Further flow cytometry and immunofluorescence revealed that compared with the sham-operated group, CD160 expression on the surface of splenic NKT cells in the model group was significantly increased(P0.01), while high-dose YHJF intervention significantly reduced CD160 expression(P0.01). ConclusionYHJF may alleviate NKT cell exhaustion in sepsis by downregulating the expression of the negative co-stimulatory molecule CD160, and this regulatory effect is closely related to fatty acid metabolism pathways. This study provides new insights and targets for further exploration of strengthening vital Qi and detoxifying strategy to improve immune cell exhaustion in acute deficiency syndrome of sepsis.
3.Study on the mechanism of gossypol acetic acid in the treatment of uterine fibroids based on proteomics
Xin ZHANG ; Abulaiti GULISITAN ; Jing SHEN ; Pei ZHANG ; Zuwen MA ; Jun YAO
China Pharmacy 2025;36(3):318-323
OBJECTIVE To investigate the mechanism of gossypol acetic acid (GAA) in the treatment of uterine fibroids. METHODS Human leiomyoma cells SK-UT-1 were selected as objects to investigate the effects of different concentrations (5, 10, 20, 40, 80, 160 μmol/L) of GAA on the activities of cell proliferation. 4D-DIA proteomic detection and bioinformatics analysis were carried out to screen differential proteins. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analysis were performed. The expressions of top 3 proteins [N-myc downstream regulated gene 1 (NDRG1), epidermal growth factor receptor feedback inhibitor 1 (ERRFI1), CXC chemokine ligand 3 (CXCL3)] with differential fold changes in SK-UT-1 cells were determined. RESULTS 10-160 μmol/L GAA could significantly reduce the survival rate of SK- UT-1 cells (P<0.05). Proteomics results showed that a total of 921 differentially expressed proteins were obtained, including 254 up-regulated proteins and 667 down-regulated proteins. The differentially expressed proteins were mainly distributed in mitochondria, nucleus, extracellular matrix, etc. Bioinformatics results showed that differentially expressed proteins were mainly involved in signaling pathways such as PI3K/AKT (phosphoinositide 3-kinase/protein kinase B), MAPK (mitogen-activated protein kinase), TNF (tumor necrosis factor), etc., which mainly involved cell apoptosis, aging, and movement. GAA significantly decreased protein expressions of NDRG1 and CXCL3 (P<0.05), but increased protein expression of ERRFI1 (P<0.05). CONCLUSIONS The improvement effect of GAA on uterine fibroids may involve signaling pathways such as PI3K/AKT, MAPK, TNF, etc. It can improve the occurrence and development of uterine fibroids by downregulating the expressions of NDRG1 and CXCL3 proteins, upregulating the expression of ERRFI1 protein, and affecting the proliferation and apoptosis of uterine fibroid cells.
4.Impact factors and reference range upper limit of thyroid volume in children aged 8-10 years old in Huangpu District, Shanghai
Weihua CHEN ; Chengdi SHAN ; Lili SONG ; Lifang MA ; Yun CAO ; Youshun QIAN ; Aina HE ; Jun XIAO
Journal of Environmental and Occupational Medicine 2025;42(2):205-210
Background As one of the key populations in the prevention and treatment of iodine deficiency disorders, it is important to continuously monitor the iodine nutritional level of school-age children. The current reference interval for thyroid volume in China is based on age only, without taking into account differences in individual developmental levels, and the distribution of thyroid volume may vary regionally due to economic, demographic, and environmental factors. The current reference cut-off points for thyroid volume proposed by the World Health Organization are not based on the Chinese population. Objective To understand the iodine nutritional status and distribution of thyroid volume (Tvol) among children aged 8-10 years in Huangpu District, Shanghai, China, to identify impact factors of Tvol, and to propose a reference range upper limit for local thyroid health surveillance, so as to provide a basis for goiter control and prevention. Methods Six hundred children aged 8-10 years in Huangpu District were recruited in 2017, 2020, and 2023, and body height, weight, thyroid volume, urinary iodine, and iodine content of household edible salt were determined. A multilevel model was constructed using population density and area as regional variables, and age, body surface area (BSA), and body mass index (BMI) as potential impact factors for at the individual level, to assess their effects on thyroid volume. Quantile regression of thyroid volume was performed, and the 98th percentile (P98) of thyroid volume was predicted based on age and BSA. Results The iodized salt coverage in the households of surveyed children in 2017, 2020, and 2023 was 72.0%, 57.0%, and 48.0%, respectively, and the iodized salt coverage decreased by year (χ2=24.31, P<0.001). The urinary iodine level of children in 2017 was higher than that in 2020 and 2023 (χ2=18.77, P<0.001). The Tvol medians of children in 2017, 2020, and 2023 were 2.29, 2.49, and 2.97 mL, respectively, and the Tvol increased by year (χ2=60.04, P<0.001). The proportion of goiter was higher in children in 2023 than in 2017 and 2020 (χ2=6.57, P<0.05). Sex differences were not statistically significant for urinary iodine levels, thyroid volume, and goiter. The median Tvol was 2.26, 2.58, and 2.76 mL in children of 8, 9, and 10 years old respectively, and the Tvol increased with age (χ2=49.02, P <0.001). Tvol was positively correlated with age, BSA, and BMI with correlation coefficients of
5.Analysis of Quality Uniformity of Hengzhi Kechuan Capsules Based on HPLC-DAD-CAD
Qian MA ; An LIU ; Qingxia XU ; Cong GUO ; Jun ZHANG ; Maoqing WANG ; Xiaodi KOU ; Yan LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):168-174
ObjectiveTo establish the fingerprints of 15 batches of Hengzhi Kechuan capsules, to quantitatively analyze 10 index components, and to evaluate the quality uniformity of samples from different batches. MethodsThe fingerprints and quantitative analysis of Hengzhi Kechuan capsules were established by a combination method of high performance liquid chromatography coupled with diode array detector and charged aerosol detector(HPLC-DAD-CAD), adenosine, guanosine, vanillic acid, safflomin A, agarotetrol, naringin, hesperidin, militarine, ginsenoside Rb1, and glycyrrhizic acid were selected as quality attribute indexes. A total of 15 batches of Hengzhi Kechuan capsules from 2022 to 2024(3 boxes per batch) were qualitatively and quantitatively analyzed, and the quality uniformity level of the manufacturers was characterized by parameters of intra-batch consistency(PA) and inter-batch consistency(PB). The homogeneity and difference of quality attribute indexes of samples from different years were analyzed by heatmap clustering analysis. ResultsHPLC fingerprints and quantitative method of Hengzhi Kechuan capsules were established, and the methods could be used for qualitative and quantitative analysis of this preparation, which was found to be stable and reliable by method validation. The similarity of fingerprints of 15 batches of samples was 0.887-0.975, a total of 13 common peaks were calibrated, and 10 common peaks were designated, all of which were quality attribute index components. The results of quantitative analysis showed that the contents of the above 10 ingredients in the samples were 0.038-0.078, 0.115-0.251, 0.007-0.018, 0.291-0.673, 0.122-0.257, 0.887-1.905, 1.841-3.364, 1.412-2.450, 2.207-3.112, 0.650-1.161, respectively. And the contents of ginsenoside Rb1 and glycyrrhizic acid met the limit requirements in the 2020 edition of Chinese Pharmacopoeia. For the samples from 15 batches, the PA values of the 10 index components were all <10%, indicating good intra-batch homogeneity, and the PB values ranged from 33.86% to 92.97%, suggesting that the inter-batch homogeneity was poor. Heatmap clustering analysis showed that the samples from different years were clustered into separate categories, and adenosine, guanosine, safflomin A, naringin, hesperidin and agarotetrol were the main differential components. ConclusionThe intra-annual quality uniformity of Hengzhi Kechuan capsules is good and the inter-annual quality uniformity is insufficient, which may be related to the quality difference of Pinellinae Rhizoma Praeparatum, Carthami Flos, Citri Sarcodactylis Fructus, Citri Reticulatae Pericarpium, Aquilariae Lignum Resinatum, Citri Fructus, etc. In this study, the fingerprint and multi-indicator determination method of Hengzhi Kechuan capsules was established, which can be used for more accurate and efficient quality control and standardization enhancement.
6.Association between dietary components and gut microbiota: a Mendelian randomization study
CHEN Haimiao ; MA Yan ; LIU Mingqi ; MA Shanshan ; LI Jun ; XU Laichao
Journal of Preventive Medicine 2025;37(1):73-76,81
Objective:
To explore the causal association between dietary components (carbohydrate, fat, protein, and sugar) and 119 genera of known gut microbiota using Mendelian randomization (MR) methods.
Methods:
Genome-wide association study (GWAS) data for dietary components were collected from the DietGen, while GWAS data for gut microbiota were collected from the MiBioGen. Single nucleotide polymorphism (SNP) loci associated with the four dietary components were used as instrumental variables, and 119 known gut microbiota genera were used as the outcomes. MR analysis was performed using inverse variance weighted (IVW) method. Heterogeneity was evaluated using Cochran's Q test, horizontal pleiotropy and exclude outliers were tested using MR-Egger regression and MR-PRESSO test. Common genetic pleiotropic genes between dietary components and gut microbiota were identified by MAGMA and PLACO analyses.
Results:
The MR analysis revealed causal associations between carbohydrates and 4 gut microbiota genera, fats and 14 genera, proteins and 14 genera, and sugars and 11 genera (all P<0.05). The MR-Egger regression analysis showed no horizontal pleiotropy among the selected SNPs, and the MR-PRESSO test did not identify any outliers (all P>0.05). The MAGMA and PLACO analyses revealed that 74.42% (32/43) of the causal associations had pleiotropic genes, with 1 to 10 pleiotropic genes identified. Multiple causal association groups shared the same pleiotropic genes.
Conclusion
There are potential genetic and causal associations between dietary components and gut microbiota.
7.Exploration and Verification of Prognostic Value of Endothelial Cells in Glioblastoma
Hengchao MA ; Yuyang LIU ; Jun XU ; Bingyan TAO ; Jun ZHANG
Cancer Research on Prevention and Treatment 2025;52(1):62-67
Objective To explore and verify the prognostic value of endothelial cells in glioblastoma. Methods Through bioinformatics analysis of the TCGA and CGGA databases, we screened endothelial cell-related markers in GBM single-cell data according to a series of criteria. Moreover, univariate Cox regression analysis was performed to obtain and screen endothelial cell prognosis-related markers and construct endothelial cell-related prognostic risk score. qPCR experiments was used to verify the differences in the expression of prognostic markers in GBM tissues and peritumoral normal brain tissues. Kaplan-Meier method was used to construct the survival curve to identify the prognostic efficacy of the prognostic risk score. Results A total of 2 115 prognostic genes of glioblastoma (GBM) were screened. Among them, 1 494 was upregulated and 621 was downregulated. Seven groups of cells were obtained after GBM single-cell sequencing analysis, including AC-like tumor cells, endothelial cells, monocytes/macrophages, NB-like tumor cells, neurons, OC-like tumor cells, and OPC-like tumor cells. According to the differential genes of endothelial cells and the corresponding screening criteria, four genes (DUSP6, STC1, VWA1, and TM4SF1) were screened for risk-score construction. The expression of the target gene in GBM tissues and normal brain tissues around the tumor was significantly up-regulated detected by qPCR. The risk score=0.171*DUSP6+0.144*STC1+0.041*VWA1−0.004*TM4SF1. Conclusion The glioblastoma endothelial cells’ risk score determined in this study can preferably predict the prognosis of patients.
8.Overview of the amendments and revisions to the General Technical Requirements adopted by the Volume Ⅳ of the Chinese Pharmacopoeia 2025 Edition
ZHANG Jun ; NING Baoming ; WEI Shifeng ; SHEN Haoyu ; SHANG Yue ; ZHU Ran ; XU Xinyi ; CHEN Lei ; LIU Tingting ; MA Shuangcheng
Drug Standards of China 2025;26(1):034-044
To introduce the general thinking, guidelines, work objectives and elaboration process of the general technical requirements adopted by volume Ⅳ of the Chinese Pharmacopoeia 2025 Edition, and to summarize and figure out the main characteristics on dosage forms, physico-chemical testing, microbial and biological testing, reference standards and guidelines The newly revised general chapters of pharmacopoeia give full play to the normative and guiding role of the Chinese Pharmacopoeia standard, track the frontier dynamics of international drug regulatory science and the elaboration of monographs, expand the application of state-of-the-art technologies, and steadily promote the harmonization and unification with the ICH guidelines; further enhance the overall capacity of TCM quality control, actively implement the 3 R principles on animal experiments, and practice the concept of environmental-friendly; replace and/or reduce the use of toxic and hazardous reagents, strengthen the requirements of drug safety control This paper aims to provide a full-view perspective for the comprehensive, correct understanding and accurate implementation of general technical requirements included in the Chinese Pharmacopoeia 2025 Edition.
9.Additions and revisions of general chapters of physical and chemical analysis in the Chinese Pharmacopoeia 2025 Edition Volume Ⅳ
XU Xinyi ; WEI Shifeng ; ZHANG Qiming ; HE Langchong ; ZHANG Jun ; MA Shuangcheng
Drug Standards of China 2025;26(1):045-050
Objective: To provide reference for the correct understanding and accurate implementation of the general chapters of physical and chemical analysis in the Chinese Pharmacopoeia 2025 Edition Volume Ⅳ.
Methods: Introduce the main characteristics and content of the additions and revisions of the general chapters of physical and chemical analysis in the Chinese Pharmacopoeia 2025 Edition Volume Ⅳ.
Results: The general chapters of physical and chemical analysis in the Chinese Pharmacopoeia 2025 Edition are more harmonized with the relevant guidelines of the ICH Q series, and the inclusion of advanced and mature instrument analysis technology standards and analysis method standards related to drug safety, efficacy, and quality controllability is further increased.
Conclusion: The general chapters of physical and chemical analysis in the Chinese Pharmacopoeia 2025 Edition have provided a more convenient new bridge for China’s drugs to go international, standardized testing technology support for achieving full process quality control, and better meet the needs of drug research and development, production, quality control, and supervision in China.
10.The introduction on the revised standards of pharmaceutical excipients in the Chinese Pharmacopoeia 2025 Edition
CHEN Lei ; LUI Yanming ; YUAN Yaozuo ; CHEN Ying ; DAI Hong ; ZHANG Jun ; MA Shuangcheng
Drug Standards of China 2025;26(1):051-057
According to the work goals and tasks determined by edition outline of the Chinese Pharmacopoeia 2025 Edition, the Chinese Pharmacopoeia 2025 has been completed. Among them, 52 new pharmaceutical excipients monographs have been added, and the total number has reached 387. 245 pharmaceutical excipients monographs have been revised, of which 109 monographs have only textual revisions and 136 monographs have substantive revisions. This article focuses on the general framework and the main characteristics of the standards of pharmaceutical excipients in the Chinese Pharmacopoeia 2025, which can contribute to accurately understand and utilize the standards in Chinese Pharmacopoeia.


Result Analysis
Print
Save
E-mail