1.Exercise preconditioning alleviates motor deficits in MPTP-induced Parkinsonian mice by improving mitochondrial function.
Miao-Miao XU ; Dan-Ting HU ; Qiao ZHANG ; Xiao-Guang LIU ; Zhao-Wei LI ; Li-Ming LU
Acta Physiologica Sinica 2025;77(3):419-431
Parkinson's disease (PD) is a common neurodegenerative disorder mainly related to mitochondrial dysfunction of dopaminergic neurons in the midbrain substantia nigra. This study aimed to investigate the effects of exercise preconditioning on motor deficits and mitochondrial function in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. Eight-week-old male C57BL/6J mice were randomly divided into four groups: sedentary + saline (SS), sedentary + MPTP (SM), exercise + saline (ES), and exercise + MPTP (EM) groups. Mice in the ES and EM groups received 4 weeks of treadmill training, and then SM and EM groups were treated with MPTP for 5 days. Motor function was assessed by behavioral tests, and morphological and functional changes in dopaminergic neurons and mitochondria in the substantia nigra of the midbrain were evaluated using immunohistochemistry, Western blot, and transmission electron microscopy technology. The results showed that, compared with the SM group, the EM group exhibited significantly improved motor ability, up-regulated protein expression levels of tyrosine hydroxylase (TH) and dopamine transporter (DAT) in the midbrain, and down-regulated protein expression of α-synuclein (α-Syn) in the mitochondria of substantia nigra. Compared with the SM group, the EM group showed up-regulated protein expression levels of mitochondrial fusion proteins, including optical atrophy protein 1 (OPA1) and mitofusin 2 (MFN2), and biogenesis-related proteins, including peroxisome proliferator activated receptor gamma coactivator 1α (PGC-1α) and mitochondrial transcription factor A (TFAM), while the protein expression levels of dynamin-related protein 1 (DRP1) and mitochondrial fission protein 1 (FIS1) were significantly down-regulated. Compared with the SM group, the EM group showed significantly reduced damage to substantia nigra mitochondria, restored mitochondrial membrane potential and ATP production, and decreased levels of reactive oxygen species (ROS). These results suggest that 4-week treadmill pre-training can alleviate MPTP-induced motor impairments in PD mice by improving mitochondrial function, providing a theoretical basis for early exercise-based prevention of PD.
Animals
;
Male
;
Physical Conditioning, Animal/physiology*
;
Mice
;
Mice, Inbred C57BL
;
Mitochondria/physiology*
;
Dopaminergic Neurons
;
MPTP Poisoning/physiopathology*
;
Substantia Nigra
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
;
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
2.Effects of SV heat-resisting protein on the microglial cells in MPTP-treated mice.
Sheng-Ming YIN ; De-Qin YU ; Ning AN
Chinese Journal of Applied Physiology 2009;25(1):79-90
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
;
Animals
;
Female
;
MPTP Poisoning
;
drug therapy
;
pathology
;
physiopathology
;
Male
;
Materia Medica
;
therapeutic use
;
Mice
;
Mice, Inbred C57BL
;
Microglia
;
drug effects
;
pathology
;
Parkinson Disease, Secondary
;
chemically induced
;
drug therapy
;
physiopathology
;
Scorpion Venoms
;
chemistry
3.Increased Burst Firing in Substantia Nigra Pars Reticulata Neurons and Enhanced Response to Selective D2 Agonist in Hemiparkinsonian Rats After Repeated Administration of Apomorphine.
Jung Il LEE ; Hee Jung SHIN ; Do Hyun NAM ; Jong Soo KIM ; Seung Chyul HONG ; Hyung Jin SHIN ; Kwan PARK ; Whan EOH ; Jong Hyun KIM ; Won Yong LEE
Journal of Korean Medical Science 2001;16(5):636-642
Intermittent administrations of dopaminergic agents in hemiparkinsonian rat enhances the behavioral response to subsequent administration of the drugs. This phenomenon is known as "priming" and thought as comparable to drug-induced dyskinesia in patients with Parkinson's disease. We investigated the behavioral and electrophysiological changes in 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian rats after repeated administrations of apomorphine. Administration of apomorphine (0.32 mg/kg, intraperitoneal, i.p.) twice daily for 6 days enhanced the rotation induced by apomorphine from 341 turns/hour at the beginning to 755 turns/hr at the end. At the same time, the response to selective D2 agonist quinpirole (0.26 mg/kg, i.p.) was also enhanced from 203 to 555 turns/hr. Extracellular single unit recording revealed no significant difference in the basal firing rates of substantia nigra pars reticulata (SNr) neurons between the ipsilateral and contralateral side of the 6-OHDA lesion regardless of the repeated administrations of apomorphine. In SNr of the lesion side, the units with burst firing pattern were found more frequently after repeated administrations of apomorphine and the suppressive effect of quinpirole on the firing rate was enhanced. These findings suggest that the increased percentage of the burst units is the important electrophysiological change in the development of enhanced response to selective D2 agonist.
Animal
;
Apomorphine/*pharmacology
;
Dopamine Agonists/*pharmacology
;
MPTP Poisoning/physiopathology
;
Male
;
Oxidopamine/toxicity
;
Parkinsonian Disorders/*physiopathology
;
Quinpirole/pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Dopamine D2/*drug effects
;
Substantia Nigra/*drug effects/physiology

Result Analysis
Print
Save
E-mail