1.Effect of Eucommiae Cortex extract mediated by ERβ/JNK pathway on learning and memory ability of APP/PS1 double-transgenic mice.
Yue LI ; Li-Li ZHANG ; Can ZHAO ; Hong-Mei ZHAO ; Yan WANG ; Jin-Lei FU ; Jie ZHANG ; Ning ZHANG ; Hong-Dan XU
China Journal of Chinese Materia Medica 2025;50(2):285-293
To study the ameliorative effect of Eucommiae Cortex extract on spatial learning disabilities in APP/PS1 double-transgenic mice and explore its relationship with estrogen receptor β(ERβ)/c-Jun N-terminal kinase(JNK) signaling pathway, sixty 3-month-old male APP/PS1 mice were randomly divided into a model group, an anti-brain failure capsule group(0.585 g·kg~(-1)), a donepezil hydrochloride group(0.65 mg·kg~(-1)), and a Eucommiae Cortex extract group(1.3 g·kg~(-1)), and 15 C57BL/6 mice of the same genetic background were set as WT control group. The learning and memory ability of mice was assessed by the Morris water maze test(MWM), the passive avoidance test(PAT), and the novel object recognition test(NOR). The histomorphological and cellular ultrastructural features of the hippocampal region of the mice were observed by hematoxylin-eosin(HE) staining and transmission electron microscopy(TEM); the molecular docking validation of the key active ingredients and the key targets was performed by using AutoDock Vina software, and the immunohistochemical method(IHC) was used to detect the ERβ expression in the dentate gyrus(DG) area of mouse hippocampus. Western blot(WB) was utilized to detect the expression of ERβ, p-JNK, and JNK in mouse hippocampal area. Compared with those in the WT control group, the results of behavioral experiments showed that the latency of the mice in the model group was significantly increased, the number of platform traversals, and the target quadrant residence time were significantly decreased in the MWM. The evasion latency was significantly reduced, and the number of errors was significantly increased in the PAT. The index of recognition of novel objects was significantly reduced in the NOR. The results of HE staining indicated that the hippocampal area of mice in the model group showed a decrease in the number of neurons, disorganization of pyramidal cell arrangement, nucleus consolidation, and other changes. TEM results showed that some neuronal nuclei in the hippocampal area had a consolidated state, slightly thickened and aberrant nuclear membranes, and fewer intracytoplasmic nidus bodies; the IHC results showed that the expression of ERβ in the hippocampal DG area of the mice was reduced. The WB results showed that the ERβ expression in the hippocampal tissue was decreased, and the p-JNK/JNK level was elevated. Compared with the model group, the Eucommiae Cortex extract group showed a significant decrease in latency, and increase in number of platform traversals and target quadrant residence time in the MWM, a significant increase in evasion latency and decrease in number of errors in the PAT, and a significant increase in the index of recognition of novel objects in the NOR. In addition, there was an increase in the number of neurons in the hippocampal area of mice. The pyramidal cells tended to be arranged in an orderly manner; the nuclei of neurons in the hippocampal area were in a better state; the expression of ERβ in the hippocampal DG area of the mice was elevated; the expression of ERβ in the hippocampal tissue was elevated, and the level of p-JNK/JNK was reduced. The effects of donepezil hydrochloride group and anti-brain failure capsule on APP/PS1 mice in terms of behavioral, HE, and TEM indexes were similar to those of Eucommiae Cortex extract, and there was no significant difference between donepezil hydrochloride group and the model group in IHC and WB experiments, and the results of molecular docking indicated that the estrogen-like components in Eucommiae Cortex extract were tightly bound to ERβ. In conclusion, the binding of Eucommiae Cortex extract to estrogen receptors, regulation of ERβ expression, and activation of ERβ/JNK signaling pathway may be one of the key mechanisms by which it improves the learning and memory ability of APP/PS1 mice.
Animals
;
Male
;
Mice
;
Mice, Transgenic
;
Memory/drug effects*
;
Mice, Inbred C57BL
;
Estrogen Receptor beta/genetics*
;
Eucommiaceae/chemistry*
;
Alzheimer Disease/psychology*
;
Amyloid beta-Protein Precursor/metabolism*
;
Presenilin-1/metabolism*
;
Humans
;
MAP Kinase Signaling System/drug effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Hippocampus/metabolism*
;
Maze Learning/drug effects*
;
Learning/drug effects*
2.Effect of cisplatin combined with Guiqi Yiyuan Ointment on Lewis lung cancer-bearing mice by regulating EGFR/MAPK pathway.
Peng-Fei ZHANG ; Jin-Hua WANG ; Jian-Qing LIANG ; Hui-Juan ZHANG ; Jin-Tian LI
China Journal of Chinese Materia Medica 2025;50(2):472-480
Based on the epidermal growth factor receptor(EGFR)/mitogen-activated protein kinase(MAPK) signaling pathway-mediated cell proliferation, this study explores the effect of cisplatin combined with Guiqi Yiyuan Ointment on Lewis lung cancer-bearing mice. A total of 60 male C57BL/6 mice were randomly divided into a blank group with 10 mice and a modeling group with 50 mice. After modeling, they were randomly divided into the model group, cisplatin group, and low-, medium-, and high-dose groups of cisplatin combined with Guiqi Yiyuan Ointment, with 10 mice in each group. After 14 days of medication, the general condition of the mice was observed; body weight was measured, and organ index and tumor inhibition rate were calculated. Hematoxylin-eosin(HE) staining was used to observe the pathological morphology changes in tumor tissue. Immunohistochemistry was used to detect the positive rate of Ki-67 antigen(Ki-67) and proliferating cell nuclear antigen(PCNA) in tumor tissue. Western blot and real time-quantitative polymerase chain reaction(qPCR) were used to detect the expression of related proteins and mRNA in tumor tissue. Flow cytometry was used to detect the cell cycle of tumor cells in tumor tissue. The results showed that compared with that in the blank group, the general condition of mice in the model group deteriorated; the body weight, as well as thymus and spleen index of mice in the model group decreased after 14 days of medication. Compared with that in the model group, the general condition of mice in the cisplatin group deteriorated, while the condition of mice in the combined groups improved; the body weight, as well as thymus and spleen index of mice in the cisplatin group decreased, while the three indicators in the combined groups increased; the tumor weight of each medication group decreased, and the tumor inhibition rate increased; there were varying degrees of necrosis in tumor cells of each medication group, and the tightness of tumor cells, the increase in the number of cell nuclei and chromatin, and mitosis all decreased. The positive rate of Ki-67 and PCNA, as well as the protein expression and ratio of p-EGFR/EGFR, rat sarcoma viral oncogene homolog(Ras), phosphorylated Raf-1 protein kinase(p-Raf-1)/Raf-1, phosphorylated mitogen-activated protein kinase kinase(p-MEK)/MEK, phosphorylated extracellular signal-regulated kinase(p-ERK)/ERK and the mRNA expression of EGFR, Ras, Raf-1, MEK, and ERK all decreased. The proportion of tumor cells in the G_0/G_1 phase of each medication group increased, and that in the S phase decreased. In addition, there was no significant difference in the G_2/M phase. Compared with that of the cisplatin group, the tumor weight of the combined groups decreased, and the tumor inhibition rate increased. The necrosis and mitosis of tumor cells in the combined groups were more pronounced; the positive rate of Ki-67 and PCNA, the protein expression and ratio of p-EGFR/EGFR, Ras, p-Raf-1/Raf-1, p-MEK/MEK, and p-ERK/ERK, as well as the mRNA expression of EGFR, Ras, Raf-1, MEK, and ERK in the combined groups all decreased. The proportion of tumor cells in the G_0/G_1 phase of the combined medium-and high-dose groups increased, and that in the S phase decreased. There was no significant difference in the proportion of tumor cells of the combined groups in the G_2/M phase. This indicates that the combination of cisplatin and Guiqi Yiyuan Ointment can enhance the anti-tumor effect of cisplatin on tumor-bearing mice, and the mechanism may be associated with the inhibition of the EGFR/MAPK pathway, which accelerates the arrest of tumor cells in the G_0/G_1 phase, thereby inhibiting the proliferation of tumor cells. At the same time, the study also indicates that Guiqi Yiyuan Ointment may reduce the damage of tumors to mice and the toxic side effects brought by cisplatin chemotherapy.
Animals
;
Male
;
Carcinoma, Lewis Lung/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
ErbB Receptors/genetics*
;
Mice
;
Cisplatin/administration & dosage*
;
Mice, Inbred C57BL
;
Cell Proliferation/drug effects*
;
Ointments/administration & dosage*
;
MAP Kinase Signaling System/drug effects*
;
Humans
;
Antineoplastic Agents/administration & dosage*
;
Lung Neoplasms/metabolism*
3.Mechanism of Xiangsha Liujunzi Decoction in improving autophagy in interstitial cells of Cajal of rats with functional dyspepsia by regulation of IRE1/ASK1/JNK pathway.
Ming-Kai LYU ; Yong-Qiang DUAN ; Jin JIN ; Wen-Chao SHAO ; Qi WU ; Yong TIAN ; Min BAI ; Ying-Xia CHENG
China Journal of Chinese Materia Medica 2025;50(8):2237-2244
This study explored the mechanism of Xiangsha Liujunzi Decoction(XSLJZD) in the treatment of functional dyspepsia(FD) based on inositol-requiring enzyme 1(IRE1)/apoptosis signal-regulating kinase 1(ASK1)/c-Jun N-terminal kinase(JNK) pathway-mediated autophagy in interstitial cells of Cajal(ICC). Forty-eight SPF-grade male SD suckling rats were randomly divided into a blank group and a modeling group, and the integrated modeling method(iodoacetamide gavage + disturbance of hunger and satiety + swimming exhaustion) was used to replicate the FD rat model. After the model replications were successfully completed, the rats were divided into a model group, high-dose, medium-dose, and low-dose groups of XSLJZD(12, 6, and 3 g·kg~(-1)·d~(-1)), and a positive drug group(mosapride of 1.35 mg·kg~(-1)·d~(-1)), and the intervention lasted for 14 days. The gastric emptying rate and intestinal propulsion rate of rats in each group were measured. The histopathological changes in the gastric sinus tissue of rats in each group were observed by hematoxylin-eosin(HE) staining. The ultrastructure of ICC was observed by transmission electron microscopy. The immunofluorescence double staining technique was used to detect the protein expression of phospho-IRE1(p-IRE1), TNF receptor associated factors 2(TRAF2), phospho-ASK1(p-ASK1), phospho-JNK(p-JNK), p62, and Beclin1 in ICC of gastric sinus tissue of rats in each group. Western blot was used to detect the related protein expression of gastric sinus tissue of rats in each group. Compared with those in the blank group, the rats in the model group showed decreased body weight, gastric emptying rate, and intestinal propulsion rate, and transmission electron microscopy revealed damage to the endoplasmic reticulum structure and increased autophagosomes in ICC. Immunofluorescence staining revealed that the ICC of gastric sinus tissue showed a significant elevation of p-IRE1, TRAF2, p-ASK1, p-JNK, and Beclin1 proteins and a significant reduction of p62 protein. Western blot revealed that the expression levels of relevant proteins in gastric sinus tissue were consistent with those of proteins in ICC. Compared with the model group, the body weight of rats in the high-dose and medium-dose groups of XSLJZD was increased, and the gastric emptying rate and intestinal propulsion rate were increased. Transmission electron microscopy observed amelioration of structural damage to the endoplasmic reticulum of ICC and reduction of autophagosomes, and the p-IRE1, TRAF2, p-ASK1, p-JNK, and Beclin1 proteins in the ICC of gastric sinus tissue were significantly decreased. The p62 protein was significantly increased. Western blot revealed that the expression levels of relevant proteins in gastric sinus tissue were consistent with those of proteins in ICC. XSLJZD can effectively treat FD, and its specific mechanism may be related to the inhibition of the expression of molecules related to the endoplasmic reticulum stress IRE1/ASK1/JNK pathway in ICC and the improvement of autophagy to promote gastric motility in ICC.
Animals
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Autophagy/drug effects*
;
Rats
;
Rats, Sprague-Dawley
;
Interstitial Cells of Cajal/metabolism*
;
Dyspepsia/physiopathology*
;
Protein Serine-Threonine Kinases/genetics*
;
MAP Kinase Kinase Kinase 5/genetics*
;
MAP Kinase Signaling System/drug effects*
;
Humans
;
Endoribonucleases/genetics*
;
Multienzyme Complexes
4.Effect and mechanism of Buyang Huanwu Decoction in improving neurological function in ischemic stroke rats based on IRE1α/ASK1/JNK pathway.
Xin-Rong ZHANG ; Tian-Lang WANG ; Jia-Hao ZHANG ; Lu JIN ; Jian-Bo WANG ; Ya-Nan XUE ; Yi QU
China Journal of Chinese Materia Medica 2025;50(14):3857-3867
This study aimed to investigate the effect and mechanism of Buyang Huanwu Decoction in regulating endoplasmic reticulum stress via the inositol-requiring enzyme 1α(IRE1α)/apoptosis signal-regulating kinase 1(ASK1)/c-Jun N-terminal kinase(JNK) pathway to improve neurological function in rats with cerebral ischemia/reperfusion injury(CIRI). SPF-grade male sprague-dawley(SD) rats were randomly divided into Sham group, model group, Buyang Huanwu Decoction group, and edaravone group. Except for the Sham group, the other groups were subjected to the modified suture method to establish a middle cerebral artery occlusion/reperfusion(MCAO/R) model. After treatment, neurological function was assessed using the Zea Longa scoring system. Gait analysis was used to detect the motor function. Detection of relative infarct area in brain tissue using 2,3,5-triphenyltetrazolium chloride(TTC) staining. Nissl staining was used to observe the structure of neuronal cells. Western blot and real-time fluorescence quantitative PCR(RT-qPCR) were used to detect IRE1α, ASK1, JNK, B cell lymphoma-2(Bcl-2), Bcl-2 related X protein(Bax), and Caspase-3 in the brain tissue. Immunohistochemistry was used to detect the positive expression of IRE1α, ASK1, and JNK. Immunofluorescence was used to detect the fluorescence expression levels of Bax, Bcl-2, and Caspase-3. The results showed that compared with the Sham group, the model group exhibited increased neurological scores(P<0.01), increased ratio of ground contact area and strength in both forelimbs(P<0.01), enlarged relative infarct area of brain tissue(P<0.05), and a reduced number of Nissl staining-positive cells(P<0.01). The protein and mRNA expression levels of IRE1α, ASK1, JNK, Bax, and Caspase-3 in brain tissue were significantly elevated, while those of Bcl-2 were decreased(P<0.05). Compared with the model group, both the Buyang Huanwu Decoction group and edaravone group showed reduced neurological scores(P<0.05), decreased ratio of ground contact area and strength in both forelimbs(P<0.05), smaller relative infarct area(P<0.05), alleviated neuronal damage, and increased number of Nissl staining-positive cells(P<0.05). The expression levels of IRE1α, ASK1, JNK, Bax, and Caspase-3 protein and mRNA in brain tissue were significantly reduced, while those of Bcl-2 were significantly increased(P<0.05). The results indicated that Buyang Huanwu Decoction can effectively improve brain injury in CIRI rats, and its mechanism of action may be related to regulating the endoplasmic reticulum stress IRE1α/ASK1/JNK signaling pathway.
Animals
;
Male
;
Rats, Sprague-Dawley
;
Protein Serine-Threonine Kinases/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
MAP Kinase Kinase Kinase 5/genetics*
;
Ischemic Stroke/physiopathology*
;
Humans
;
MAP Kinase Signaling System/drug effects*
;
Apoptosis/drug effects*
;
Endoribonucleases/genetics*
;
JNK Mitogen-Activated Protein Kinases/genetics*
;
Endoplasmic Reticulum Stress/drug effects*
;
Multienzyme Complexes
5.Modified Shuyu Pills regulate VTA-NAc circuit myelination to ameliorate depressive behaviors in mouse model of vascular dementia via LDLR/MEK/ERK signaling pathway.
Song JING ; Zi-Hu TAN ; Qiong YANG
China Journal of Chinese Materia Medica 2025;50(16):4555-4563
This study aims to explore the effects and potential mechanisms of Modified Shuyu Pills in ameliorating depressive behaviors in the mouse model of vascular dementia(VaD). Seventy-two three-month-old male C57BL/6 mice were assigned into six groups: sham, model, low-, medium-, and high-dose Modified Shuyu Pills, and fluoxetine. The other five groups except the sham group underwent bilateral common carotid artery stenosis combined with chronic unpredictable stress. Depressive behaviors were assessed by the sucrose preference test and tail suspension test. Cerebral blood flow was measured by laser speckle imaging. Protein levels of low density lipoprotein receptor(LDLR), mitogen-activated protein kinase kinase(MEK), phosphorylated(p)-MEK, extracellular signal-regulated kinase(ERK), and p-ERK in the ventral tegmental area(VTA) and nucleus accumbens(NAc) were determined by Western blot. The fluorescence intensity of myelin basic protein(MBP) in the VTA and NAc were measured by immunofluorescence. Myelin sheath morphology in the VTA and NAc was observed by luxol fast blue staining, and the ultrastructure of myelin sheath in the VTA and NAc was examined by transmission electron microscopy. In the tail suspension test, the immobility time of the model group was longer than that of the sham group(P<0.01). In the sucrose preference test, the sucrose preference rate of the model group was lower than that of the sham group(P<0.01). After intervention with Modified Shuyu Pills, the immobility time in the tail suspension test was shortened(P<0.01), and the sucrose preference rate increased(P<0.01). Laser speckle imaging results showed that compared with the sham group, the model group showed reduced cerebral blood flow(P<0.01), and the reduction was reversed by medium-and high-dose Modified Shuyu Pills(P<0.01). Western blot results indicated that the relative expression levels of LDLR, p-MEK/MEK, and p-ERK/ERK in the VTA and NAc of the model group were lower than those in the sham group(P<0.01). Medium-and high-dose Modified Shuyu Pills reversed this trend(P<0.01). Immunofluorescence results showed that the fluorescence intensity of MBP in the VTA and NAc of the model group was lower than that of the sham group(P<0.01). The medium-and high-dose Modified Shuyu Pills groups showed increased fluorescence intensity of MBP in the VTA compared with the model group(P<0.01). In the NAc, the fluorescence intensity of MBP in all the groups of Modified Shuyu Pills increased to varying degrees compared with that in the model group(P<0.01). Luxol fast blue staining results showed that the model group presented lighter staining intensity and looser arrangement of myelin fibers than the sham group, indicating significant demyelination in the model group. However, after intervention with medium-and high-dose Modified Shuyu Pills, the staining intensity and myelin sheath structure in the VTA and NAc were improved. Transmission electron microscopy results revealed that the myelin sheath in the VTA and NAc of the sham group was intact and dense, while the model group exhibited extensive myelin loss, with myelin sheath degeneration and disintegration. After intervention with Modified Shuyu Pills, the myelin sheath loss in the VTA and NAc of mice was reduced, and the proportion of myelinated tissue increased. In summary, Modified Shuyu Pills may promote myelination via the VTA-NAc circuit by upregulating the LDLR/MEK/ERK signaling pathway, thereby ameliorating depressive-like behaviors in VaD mice.
Animals
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Ventral Tegmental Area/metabolism*
;
Mice, Inbred C57BL
;
Disease Models, Animal
;
Depression/genetics*
;
Receptors, LDL/genetics*
;
Dementia, Vascular/psychology*
;
MAP Kinase Signaling System/drug effects*
;
Nucleus Accumbens/metabolism*
;
Behavior, Animal/drug effects*
;
Humans
;
Myelin Sheath/drug effects*
;
Extracellular Signal-Regulated MAP Kinases/genetics*
6.Influences of dihydromyricetin on proliferation and apoptosis of chondrocytes in osteoarthritis induced by H2O2 through ROS/p38-MAPK signal pathway.
Ying CHENG ; Hui-Juan CHEN ; Ting YANG
China Journal of Orthopaedics and Traumatology 2025;38(4):396-402
OBJECTIVE:
To analyze the influences of dihydromyricetin on the proliferation and apoptosis of chondrocytes in osteoarthritis induced by hydrogen peroxide (H2O2) through reactive oxygen species (ROS)/p38 mitogen activated protein kinase (p38-MAPK) pathway.
METHODS:
Five C57BL/6J mice were euthanized by cervical dislocation after anesthesia. Chondrocytes were extracted and cultured.After passage, the chondrocytes were divided into control group, H2O2 group (0.8 μmol·L-1 H2O2), dihydromyricetin low concentration group (0.8 μmol·L-1 H2O2+20 μmol·L-1 dihydromyricetin), dihydromyricetin high concentration group (0.8 μmol·L-1 H2O2+80 μmol·L-1 dihydromyricetin), and ROS inhibitor N-acetylcysteine (NAC) group (0.8 μmol·L-1 H2O2+5 mmol·L-1 NAC). The activity of chondrocytes was measured by methyl thiazolyl tetrazolium (MTT) assay. The apoptosis rate of chondrocytes was measured by Hoechst 33342 method. The level of ROS in chondrocytes was measured by 2, 7-dichlorofluorescein diacetate (DCFH-DA) fluorescence probe.The level of Type II collagen α1 (Col2α1) mRNA was measured by qRT-PCR.And the expression of Col2α1, p-p38-MAPK/p38-MAPK, B cell lymphoma gene-2 (Bcl-2) and Bcl-2 associated X protein (Bax) proteins was detected by Western blot.
RESULTS:
The chondrocytes showed swirling fibrous mass, and the expression of COL2α was positive. Compared with the control group, the chondrocyte viability, apoptosis rate, ROS fluorescence intensity, p-p38-MAPK/p38-MAPK, and the expression of Bax protein in H2O22 group increased, the level of Col2α1 mRNA, and the expression of Col2α1 and Bcl-2 proteins decreased (P<0.05). Compared with H2O2 group, the chondrocyte viability, apoptosis rate, ROS fluorescence intensity, p-p38-MAPK/p38-MAPK, and the expression of Bax protein in dihydromyricetin low concentration group, dihydromyricetin high concentration group, and NAC group decreased, the level of Col2α1 mRNA, and the expression of Col2α1 and Bcl-2 proteins increased (P<0.05).
CONCLUSION
Dihydromyricetin may inhibit chondrocyte apoptosis, inflammatory reaction and oxidative stress by inhibiting ROS/p38-MAPK pathway. Dihydromyricetin may be a potential drug for treating osteoarthritis.
Animals
;
Chondrocytes/metabolism*
;
Apoptosis/drug effects*
;
Hydrogen Peroxide/toxicity*
;
Osteoarthritis/physiopathology*
;
Mice, Inbred C57BL
;
Reactive Oxygen Species/metabolism*
;
Mice
;
Flavonols/pharmacology*
;
p38 Mitogen-Activated Protein Kinases/genetics*
;
Cell Proliferation/drug effects*
;
Male
;
Signal Transduction/drug effects*
;
MAP Kinase Signaling System/drug effects*
;
Cells, Cultured
7.Interferon-λ1 improves glucocorticoid resistance caused by respiratory syncytial virus by regulating the p38 mitogen-activated protein kinase signaling pathway.
Li PENG ; Yao LIU ; Fang-Cai LI ; Xiao-Fang DING ; Xiao-Juan LIN ; Tu-Hong YANG ; Li-Li ZHONG
Chinese Journal of Contemporary Pediatrics 2025;27(8):1011-1016
OBJECTIVES:
To investigate the effect of interferon-λ1 (IFN-λ1) on glucocorticoid (GC) resistance in human bronchial epithelial cells (HBECs) stimulated by respiratory syncytial virus (RSV).
METHODS:
HBECs were divided into five groups: control, dexamethasone, IFN-λ1, RSV, and RSV+IFN-λ1. CCK-8 assay was used to measure the effect of different concentrations of IFN-λ1 on the viability of HBECs, and the sensitivity of HBECs to dexamethasone was measured in each group. Quantitative real-time PCR was used to measure the mRNA expression levels of p38 mitogen-activated protein kinase (p38 MAPK), glucocorticoid receptor (GR), and MAPK phosphatase-1 (MKP-1). Western blot was used to measure the protein expression level of GR in cell nucleus and cytoplasm, and the nuclear/cytoplasmic ratio of GR was calculated.
RESULTS:
At 24 and 72 hours, the proliferation activity of HBECs increased with the increase in IFN-λ1 concentration in a dose- and time-dependent manner (P˂0.05). Compared with the RSV group, the RSV+IFN-λ1 group had significant reductions in the half-maximal inhibitory concentration of dexamethasone and the mRNA expression level of p38 MAPK (P<0.05), as well as significant increases in the mRNA expression levels of GR and MKP-1, the level of GR in cell nucleus and cytoplasm, and the nuclear/cytoplasmic GR ratio (P<0.05).
CONCLUSIONS
IFN-λ1 can inhibit the p38 MAPK pathway by upregulating MKP-1, promote the nuclear translocation of GR, and thus ameliorate GC resistance in HBECs.
Humans
;
p38 Mitogen-Activated Protein Kinases/genetics*
;
Glucocorticoids/pharmacology*
;
Receptors, Glucocorticoid/analysis*
;
Dual Specificity Phosphatase 1/physiology*
;
Dexamethasone/pharmacology*
;
Drug Resistance/drug effects*
;
Respiratory Syncytial Viruses
;
Interferons/pharmacology*
;
MAP Kinase Signaling System/drug effects*
;
Epithelial Cells/drug effects*
;
Signal Transduction/drug effects*
;
Cells, Cultured
8.(+)-Strebloside induces Non-Hodgkin lymphoma cell death through the STEAP3-Mediated Ferroptosis and MAPK pathway.
Yu ZHAO ; Jing CAI ; Ying YANG ; Dongmei ZHANG ; Jiayi REN ; Shuyun XIAO ; Jian XU ; Feng FENG ; Rong WU ; Jie ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(10):1221-1231
(+)-Strebloside, a significant bioactive compound isolated from the roots of Streblus asper Lour., demonstrates inhibitory effects against multiple malignancies. However, its specific function and underlying mechanistic pathways in Non-Hodgkin lymphoma (NHL) remain unexplored. This investigation sought to elucidate the role and potential mechanisms of (+)-strebloside-induced NHL cell death. The results demonstrated that (+)-strebloside significantly induced apoptosis and ferroptosis in NHL cells, including those from Raji cell-derived xenograft models. Mechanistic analyses revealed that (+)-strebloside enhanced six-transmembrane epithelial antigen of prostate 3 (STEAP3)-induced ferroptosis in NHL, and STEAP3 inhibition reduced the proliferation-inhibitory effects of (+)-strebloside. Furthermore, (+)-strebloside suppressed NHL proliferation through the mitogen-activated protein kinase (MAPK) pathway, and extracellular signal-regulated kinase (ERK) inhibition diminished the proliferation-inhibitory activity induced by (+)-strebloside. These findings indicate that (+)-strebloside presents promising therapeutic potential for NHL treatment.
Humans
;
Ferroptosis/drug effects*
;
Lymphoma, Non-Hodgkin/physiopathology*
;
Cell Line, Tumor
;
MAP Kinase Signaling System/drug effects*
;
Animals
;
Cell Proliferation/drug effects*
;
Mice
;
Apoptosis/drug effects*
;
Membrane Proteins/genetics*
;
Xenograft Model Antitumor Assays
;
Male
;
Mice, Nude
9.Mechanism of kaempferol on intervertebral disc degeneration based on p38 MAPK signaling pathway.
Chen-Mo-Ji WANG ; Ya-Dong WU ; Song-Lin LIANG ; Shang GAO ; Ze-Lin YUE ; Lu-Ming KONG ; Kuan-Hui GAO ; Nian-Hu LI
China Journal of Chinese Materia Medica 2024;49(21):5721-5729
This study investigated the mechanism by which kaempferol(KAE) affected intervertebral disc degeneration(IDD) through the p38 mitogen-activated protein kinase(p38 MAPK) signaling pathway. Rats were randomly divided into five groups: control group, model group, low-dose KAE group, medium-dose KAE group, and high-dose KAE group. An IDD model was established by needle puncture of the caudal intervertebral discs. Four weeks post-surgery, the rats were administered KAE via gavage for 8 consecutive weeks. Magnetic resonance imaging(MRI) was performed, and samples were collected. In vitro, an inflammation model of nucleus pulposus cells(NPCs) induced by tumor necrosis factor-alpha(TNF-α) was constructed. Anisomycin was used to activate the p38 MAPK signaling pathway. NPCs were divided into blank, model, KAE, agonist, and KAE + agonist groups. After 1 day of treatment, cell proliferation activity was assessed using the CCK-8. Protein expression levels were determined by Western blot, and mRNA expression was measured by real-time quantitative polymerase chain reaction. Cell apoptosis was detected by TUNEL staining, and immunofluorescence staining was used to detect type Ⅱ collagen and matrix metalloproteinase 3(MMP3). In vivo results indicated significant improvement in the degree of IDD in the treatment groups compared to the model group, with the medium-dose group showing more pronounced therapeutic effects than the low-and high-dose groups. In vitro results demonstrated that KAE treatment significantly enhanced NPC proliferation activity, down-regulated the expression levels of Bcl-2-associated X protein(Bax), interleukin-6(IL-6), interleukin-17A(IL-17A), MMP3, and a disintegrin and metalloproteinase with thrombospondin motifs 5, and inhibited the phosphorylation of p38 MAPK pathway-related proteins. Activation of the p38 MAPK signaling pathway by anisomycin reduced the therapeutic effects of KAE. The study concluded that KAE could improve the proliferation activity of degenerated NPCs, reduce inflammation levels, and slow the progression of IDD in rats, and the mechanism was likely related to the regulation of the p38 MAPK signaling pathway.
Animals
;
p38 Mitogen-Activated Protein Kinases/genetics*
;
Kaempferols/pharmacology*
;
Intervertebral Disc Degeneration/genetics*
;
Rats
;
Rats, Sprague-Dawley
;
Male
;
Apoptosis/drug effects*
;
Cell Proliferation/drug effects*
;
Nucleus Pulposus/drug effects*
;
Signal Transduction/drug effects*
;
Humans
;
MAP Kinase Signaling System/drug effects*
10.Effects of Xihuang Pills on angiogenesis, invasion, and metastasis of p rostate cancer based on FAK/Src/ERK pathway.
Yan LONG ; Xin-Jun LUO ; Bo ZOU ; Xin-Jun DAI ; Fang-Zhi FU ; Biao WANG ; Li-Tong WU ; Yong-Rong WU ; Qing ZHOU ; Xue-Fei TIAN
China Journal of Chinese Materia Medica 2024;49(23):6378-6388
Based on the focal adhesion kinase(FAK)/steroid receptor coactivator(Src)/extracellular regulated protein kinase(ERK) pathway, this study explored the effects of Xihuang Pills on angiogenesis, invasion, and metastasis in prostate cancer. Liquid chromatography-tandem mass spectrometry(LC-MS/MS) was used to analyze and identify the active ingredients of Xihuang Pills. Bioinformatics techniques, including R language and Perl programs, were employed to analyze the interactions between prostate cancer-related targets and the potential targets of Xihuang Pills. A subcutaneous transplantation tumor model of prostate cancer was established in nude mice using PC3 cells to verify the efficacy and molecular mechanisms of Xihuang Pills. In vitro cellular experiments, including cell proliferation assays(CCK-8), Transwell assays, scratch assays, real-time quantitative reverse transcription PCR, and Western blot, were used to detect the effects of Xihuang Pills on the proliferation, invasion, and migration of prostate cancer cells, as well as on FAK/Src/ERK pathway-related targets. LC-MS/MS identified 99 active ingredients in Xihuang Pills, including gallic acid, gentisic acid, artemisinin, corilagin, phenylbutazone-glucoside, thujic acid, and arecoic acid B. Network pharmacological analysis of the active ingredients in Xihuang Pills revealed that the FAK/Src/ERK signaling pathway was a key pathway in its anti-prostate cancer effects. In vivo and in vitro experiments confirmed that Xihuang Pills significantly inhibited the proliferation, invasion, and migration of PC3 and LNCaP cells, suppressed the growth of PC3 subcutaneous tumors, and reduced the protein expression levels related to the FAK/Src/ERK signaling pathway. In conclusion, the inhibition of angiogenesis, invasion, and metastasis by regulating the FAK/Src/ERK pathway is one of the mechanisms by which Xihuang Pills exert anti-prostate cancer effects.
Humans
;
Male
;
Prostatic Neoplasms/enzymology*
;
Drugs, Chinese Herbal/chemistry*
;
Animals
;
Mice
;
Cell Proliferation/drug effects*
;
Mice, Nude
;
Cell Movement/drug effects*
;
Cell Line, Tumor
;
src-Family Kinases/genetics*
;
Neovascularization, Pathologic/metabolism*
;
Neoplasm Metastasis
;
Neoplasm Invasiveness
;
Focal Adhesion Kinase 1/genetics*
;
Extracellular Signal-Regulated MAP Kinases/genetics*
;
MAP Kinase Signaling System/drug effects*
;
Focal Adhesion Protein-Tyrosine Kinases/genetics*
;
Signal Transduction/drug effects*
;
Angiogenesis

Result Analysis
Print
Save
E-mail