1.Blocking ERK signaling pathway lowers MMP-9 expression to alleviate brain edema after traumatic brain injury in rats.
Zhaohua TANG ; Wentao WANG ; Zili LIU ; Xiaochuan SUN ; Zhengbu LIAO ; Feilan CHEN ; Guangyuan JIANG ; Gang HUO
Journal of Zhejiang University. Medical sciences 2020;40(7):1018-1022
OBJECTIVE:
To investigate the effects of blocking the activation of ERK pathway on the expression of matrix metalloproteinase-9 (MMP-9) and the formation of cerebral edema in SD rats after brain injury.
METHODS:
Ninety SD rats were randomly divided into 3 equal groups, including a sham-operated group, modified Feeney's traumatic brain injury model group, and ERK inhibition group where the ERK inhibitor SCH772984 (500 μg/kg) was injected via the femoral vein 15 min before brain trauma. At 2 h and 2 days after brain trauma, the permeability of blood-brain barrier was assessed by Evans blue method, the water content of the brain tissue was determined, and the phosphorylation level of ERK and the expression level of MMP-9 mRNA and protein were measured by RT-PCR and Western blotting.
RESULTS:
Compared with the sham-operated group, the rats with brain trauma exhibited significantly increased level of ERK phosphorylation at 2 h and significantly increased expression of MMP-9 mRNA and protein 2 days after the injury ( < 0.01). Treatment with the ERK inhibitor significantly decreased the phosphorylation level of ERK after the injury ( < 0.01), suppressed over-expression of MMP-9 mRNA and protein 2 days after the injury ( < 0.01). The permeability of blood-brain barrier increased significantly 2 h after brain trauma ( < 0.05) and increased further at 2 days ( < 0.01); the water content of the brain did not change significantly at 2 h ( > 0.05) but increased significantly 2 d after the injury ( < 0.01). Treatment with the ERK inhibitor significantly lowered the permeability of blood-brain barrier and brain water content after brain trauma ( < 0.01).
CONCLUSIONS
Blocking the activation of ERK pathway significantly reduced the over-expression of MMP-9 and alleviates the damage of blood-brain barrier and traumatic brain edema, suggesting that ERK signaling pathway plays an important role in traumatic brain edema by regulating the expression of MMP-9.
Animals
;
Brain Edema
;
drug therapy
;
etiology
;
Brain Injuries, Traumatic
;
complications
;
drug therapy
;
Gene Expression Regulation, Enzymologic
;
drug effects
;
Indazoles
;
pharmacology
;
therapeutic use
;
MAP Kinase Signaling System
;
drug effects
;
Matrix Metalloproteinase 9
;
genetics
;
Piperazines
;
pharmacology
;
therapeutic use
;
Protein Kinase Inhibitors
;
pharmacology
;
therapeutic use
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
2.Effects of Zhizi Chuanxiong Capsule () on the Abnormal Methylation in Rabbits with Atherosclerosis.
Qing-Bing ZHOU ; Li-Qi WU ; Yin ZHANG ; Zhi-Fang ZHANG ; Feng-Qin XU
Chinese journal of integrative medicine 2018;24(7):512-517
OBJECTIVE:
To investigate the effects of Zhizi Chuanxiong Capsule (ZCC, ) on abnormal DNA methylation in a rabbit model of atherosclerosis (AS).
METHODS:
After 1 week of adaptive feeding, 48 New Zealand white rabbits were randomly divided into 4 groups: a control group (n=12) fed with normal diet for 22 weeks; a model group (n=12) fed with high fat diet for 14 weeks followed by 8 weeks of normal diet feeding; a low-dose ZCC group (n=12) fed with high fat diet and low-dose ZCC for 14 weeks, followed by 8 weeks of normal diet and low-dose drug; a high-dose ZCC group (n=12) fed with high fat diet and high-dose drug for 14 weeks, followed by 8 weeks of normal diet and high-dose drug. After 22 weeks of feeding, blood samples were taken from the rabbit ear vein, and the genomic DNA was extracted for methylation immunoprecipitation sequencing (Medip-seq). The aorta tissues were collected for hematoxylin-eosin (HE) staining.
RESULTS
Eight rabbits died during the feeding process. HE staining showed that the size of the lipid deposition on vessel wall and atherosclerotic plaque formation were reduced in both low- and high-dose group. The Medip-seq results showed that there were 146 abnormally methylated genes (including both hypermethylated gene and hypomethylated genes) in the model group, compared with the control group. Gene Ontology (GO) and Pathway analysis showed that these abnormally methylated genes were found to be involved in multiple AS-related functions and pathways, such as protein kinase C activity, cholesterol transport, mitogen-activated protein kinase (MAPK) signaling pathway, peroxisome proliferater-activated receptor signaling pathway, vascular smooth muscle contraction, inflammation and so on. The abnormal methylated genes in AS model group were altered in both low- and high-dose groups: low-dose ZCC could change 72 of the 146 abnormally methylated genes, high-dose ZCC could change 71. Through GO and Pathway analysis, these altered methylated genes were involved in protein kinase C activity, inflammatory pathway, MAPK signaling pathway, vascular endothelial growth factor signaling pathway, etc. CONCLUSION: ZCC could treat AS through regulating the abnormal hypermethylated and hypomethylated genes in AS rabbit model.
Animals
;
Atherosclerosis
;
drug therapy
;
genetics
;
Capsules
;
DNA Methylation
;
drug effects
;
Disease Models, Animal
;
Drugs, Chinese Herbal
;
pharmacology
;
therapeutic use
;
MAP Kinase Signaling System
;
drug effects
;
Male
;
Rabbits
;
Vascular Endothelial Growth Factor A
;
physiology
3.Transcriptional activation of glucose transporter 1 in orthodontic tooth movement-associated mechanical response.
Yu WANG ; Qian LI ; Fuliang LIU ; Shanshan JIN ; Yimei ZHANG ; Ting ZHANG ; Yunyan ZHU ; Yanheng ZHOU
International Journal of Oral Science 2018;10(3):27-27
The interplay between mechanoresponses and a broad range of fundamental biological processes, such as cell cycle progression, growth and differentiation, has been extensively investigated. However, metabolic regulation in mechanobiology remains largely unexplored. Here, we identified glucose transporter 1 (GLUT1)-the primary glucose transporter in various cells-as a novel mechanosensitive gene in orthodontic tooth movement (OTM). Using an in vivo rat OTM model, we demonstrated the specific induction of Glut1 proteins on the compressive side of a physically strained periodontal ligament. This transcriptional activation could be recapitulated in in vitro cultured human periodontal ligament cells (PDLCs), showing a time- and dose-dependent mechanoresponse. Importantly, application of GLUT1 specific inhibitor WZB117 greatly suppressed the efficiency of orthodontic tooth movement in a mouse OTM model, and this reduction was associated with a decline in osteoclastic activities. A mechanistic study suggested that GLUT1 inhibition affected the receptor activator for nuclear factor-κ B Ligand (RANKL)/osteoprotegerin (OPG) system by impairing compressive force-mediated RANKL upregulation. Consistently, pretreatment of PDLCs with WZB117 severely impeded the osteoclastic differentiation of co-cultured RAW264.7 cells. Further biochemical analysis indicated mutual regulation between GLUT1 and the MEK/ERK cascade to relay potential communication between glucose uptake and mechanical stress response. Together, these cross-species experiments revealed the transcriptional activation of GLUT1 as a novel and conserved linkage between metabolism and bone remodelling.
Animals
;
Biomechanical Phenomena
;
Blotting, Western
;
Bone Remodeling
;
drug effects
;
Cells, Cultured
;
Glucose Transporter Type 1
;
antagonists & inhibitors
;
genetics
;
Humans
;
Hydroxybenzoates
;
pharmacology
;
Immunohistochemistry
;
MAP Kinase Signaling System
;
drug effects
;
Mice
;
Mice, Inbred C57BL
;
Osteoprotegerin
;
metabolism
;
Periodontal Ligament
;
cytology
;
RANK Ligand
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Reverse Transcriptase Polymerase Chain Reaction
;
Tooth Movement Techniques
;
Transcriptional Activation
4.Saponins isolated from Schizocapsa plantaginea inhibit human hepatocellular carcinoma cell growth in vivo and in vitro via mitogen-activated protein kinase signaling.
Yue-Wen SUN ; Han-Chen QIU ; Ming-Chun OU ; Run-Li CHEN ; Gang LIANG
Chinese Journal of Natural Medicines (English Ed.) 2018;16(1):29-40
The underground cane of Schizocapsa plantaginea (Hance) has long been used by Chinese ethnic minority as a constituent of anti-cancer formulae. Saponins are abundant secondary metabolic products located in the underground cane of this plant. The potential therapeutic effects of total saponins isolated from Schizocapsa plantaginea (Hance) (SSPH) on human hepatocellular carcinoma (HCC) were tested in vitro in human liver cancer cell lines, SMMC-7721 and Bel-7404. Apoptosis and cell cycle arrest were determined using flow cytometry, caspase activation was determined by ELISA, and PARP, cleaved PARP, mitogen-activated protein kinase (MAPK) expression and phosphorylation were measured using Western blotting analysis. In vivo anti-HCC effects of SSPH were verified in nude mouse xenograft model. SSPH exerted markedly inhibitory effect on HCC cell proliferation in time- and concentration-dependent manner. Moreover, SSPH significantly induced apoptosis through caspase-dependent signaling and arrested cell cycle at G/M phase. These anti-proliferation effects of SSPH were associated with up-regulated phosphorylation of extracellular signal-regulated kinase-1/2 (Erk1/2) and c-jun-NH2-kinase-1/2 (JNK1/2) and reduced phosphorylation of p38MAPK. Furthermore, inhibitors of ERK, UO126, and JNK, SP600125 inhibited the anti-proliferation effects by SSPH, suggesting that Erk and JNK were the effector molecules in SSPH induced anti-proliferative action. During in vivo experiments, SSPH was found to inhibit xenograft tumor growth in nude mice, with a similar mechanism in vitro. Our study confirmed that SSPH exerted antagonistic effects on human liver cancer cells both in vitro and in vivo. Molecular mechanisms underlying SSPH action might be closely associated with MAPK signaling pathways. These results indicated that SSPH has potential therapeutic effects on HCC.
Animals
;
Antineoplastic Agents
;
isolation & purification
;
pharmacology
;
toxicity
;
Apoptosis
;
drug effects
;
Caspases
;
genetics
;
metabolism
;
Cell Cycle Checkpoints
;
drug effects
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Cell Survival
;
drug effects
;
Dioscoreaceae
;
chemistry
;
Heterografts
;
drug effects
;
growth & development
;
Humans
;
Inhibitory Concentration 50
;
Liver Neoplasms
;
drug therapy
;
metabolism
;
pathology
;
MAP Kinase Signaling System
;
drug effects
;
Mice
;
Mice, Nude
;
Phosphorylation
;
drug effects
;
Plant Tubers
;
chemistry
;
Poly (ADP-Ribose) Polymerase-1
;
metabolism
;
Saponins
;
isolation & purification
;
pharmacology
;
toxicity
5.ASIC1a contributes to the symptom of pain in a rat model of chronic prostatitis.
Song FAN ; Zong-Yao HAO ; Li ZHANG ; Jun ZHOU ; Yi-Fei ZHANG ; Shen TAI ; Xian-Sheng ZHANG ; Chao-Zhao LIANG
Asian Journal of Andrology 2018;20(3):300-305
This study aims to validate our hypothesis that acid-sensing ion channels (ASICs) may contribute to the symptom of pain in patients with chronic prostatitis (CP). We first established a CP rat model, then isolated the L5-S2 spinal dorsal horn neurons for further studies. ASIC1a was knocked down and its effects on the expression of neurogenic inflammation-related factors in the dorsal horn neurons of rat spinal cord were evaluated. The effect of ASIC1a on the Ca2+ ion concentration in the dorsal horn neurons of rat spinal cord was measured by the intracellular calcium ([Ca2+]i) intensity. The effect of ASIC1a on the p38/mitogen-activated protein kinase (MAPK) signaling pathway was also determined. ASIC1a was significantly upregulated in the CP rat model as compared with control rats. Acid-induced ASIC1a expression increased [Ca2+]i intensity in the dorsal horn neurons of rat spinal cord. ASIC1a also increased the levels of neurogenic inflammation-related factors and p-p38 expression in the acid-treated dorsal horn neurons. Notably, ASIC1a knockdown significantly decreased the expression of pro-inflammatory cytokines. Furthermore, the levels of p-p38 and pro-inflammatory cytokines in acid-treated dorsal horn neurons were significantly decreased in the presence of PcTx-1, BAPTA-AM, or SB203580. Our results showed that ASIC1a may contribute to the symptom of pain in patients with CP, at least partially, by regulating the p38/MAPK signaling pathway.
Acid Sensing Ion Channel Blockers/pharmacology*
;
Acid Sensing Ion Channels/genetics*
;
Animals
;
Calcium/metabolism*
;
Chelating Agents/pharmacology*
;
Chronic Disease
;
Cytokines/metabolism*
;
Disease Models, Animal
;
Egtazic Acid/pharmacology*
;
Gene Knockdown Techniques
;
Imidazoles/pharmacology*
;
Inflammation/metabolism*
;
MAP Kinase Signaling System/genetics*
;
Male
;
Pain/genetics*
;
Peptides/pharmacology*
;
Phosphorylation/drug effects*
;
Posterior Horn Cells/metabolism*
;
Prostatitis/complications*
;
Protein Kinase Inhibitors/pharmacology*
;
Pyridines/pharmacology*
;
Rats
;
Spider Venoms/pharmacology*
;
Up-Regulation
;
p38 Mitogen-Activated Protein Kinases/metabolism*
6.EGF Induced RET Inhibitor Resistance in CCDC6-RET Lung Cancer Cells.
Hyun CHANG ; Ji Hea SUNG ; Sung Ung MOON ; Han Soo KIM ; Jin Won KIM ; Jong Seok LEE
Yonsei Medical Journal 2017;58(1):9-18
PURPOSE: Rearrangement of the proto-oncogene rearranged during transfection (RET) has been newly identified potential driver mutation in lung adenocarcinoma. Clinically available tyrosine kinase inhibitors (TKIs) target RET kinase activity, which suggests that patients with RET fusion genes may be treatable with a kinase inhibitor. Nevertheless, the mechanisms of resistance to these agents remain largely unknown. Thus, the present study aimed to determine whether epidermal growth factor (EGF) and hepatocyte growth factor (HGF) trigger RET inhibitor resistance in LC-2/ad cells with CCDC6-RET fusion genes. MATERIALS AND METHODS: The effects of EGF and HGF on the susceptibility of a CCDC6-RET lung cancer cell line to RET inhibitors (sunitinib, E7080, vandetanib, and sorafenib) were examined. RESULTS: CCDC6-RET lung cancer cells were highly sensitive to RET inhibitors. EGF activated epidermal growth factor receptor (EGFR) and triggered resistance to sunitinib, E7080, vandetanib, and sorafenib by transducing bypass survival signaling through ERK and AKT. Reversible EGFR-TKI (gefitinib) resensitized cancer cells to RET inhibitors, even in the presence of EGF. Endothelial cells, which are known to produce EGF, decreased the sensitivity of CCDC6-RET lung cancer cells to RET inhibitors, an effect that was inhibited by EGFR small interfering RNA (siRNA), anti-EGFR antibody (cetuximab), and EGFR-TKI (Iressa). HGF had relatively little effect on the sensitivity to RET inhibitors. CONCLUSION: EGF could trigger resistance to RET inhibition in CCDC6-RET lung cancer cells, and endothelial cells may confer resistance to RET inhibitors by EGF. E7080 and other RET inhibitors may provide therapeutic benefits in the treatment of RET-positive lung cancer patients.
Adenocarcinoma/drug therapy/*genetics
;
Cell Line, Tumor
;
Cetuximab/pharmacology
;
Drug Resistance, Neoplasm/drug effects/*genetics
;
Epidermal Growth Factor/metabolism/*pharmacology
;
*Gene Rearrangement
;
Hepatocyte Growth Factor/*pharmacology
;
Humans
;
Indoles/pharmacology
;
Lung Neoplasms/drug therapy/*genetics
;
MAP Kinase Signaling System
;
*Mutation
;
Niacinamide/analogs & derivatives/pharmacology
;
Phenylurea Compounds/pharmacology
;
Piperidines/pharmacology
;
Protein Kinase Inhibitors/therapeutic use
;
Proto-Oncogene Proteins c-ret/*antagonists & inhibitors/genetics
;
Pyrroles/pharmacology
;
Quinazolines/pharmacology
;
RNA, Small Interfering/pharmacology
;
Receptor, Epidermal Growth Factor/genetics/metabolism
;
Signal Transduction/drug effects
;
fms-Like Tyrosine Kinase 3/metabolism
7.Hydroxysafflor yellow A attenuate lipopolysaccharide-induced endothelium inflammatory injury.
Ming JIN ; Chun-Yan SUN ; Bao-Xia ZANG
Chinese journal of integrative medicine 2016;22(1):36-41
OBJECTIVEThis study observed attenuating effect of hydroxysafflor yellow A (HSYA), an effective ingredient of aqueous extract of Carthamus tinctorius L, on lipopolysaccharide (LPS)-induced endothelium inflammatory injury.
METHODSEahy926 human endothelium cell (EC) line was used; thiazolyl blue tetrazolium bromide (MTT) test was assayed to observe the viability of EC; Luciferase reporter gene assay was applied to measure nuclear factor-κB (NF-κB) p65 subunit nuclear binding activity in EC; Western blot technology was used to monitor mitogen activated protein kinase (MAPKs) and NF-κB activation. Reverse transcription polymerase chain reaction (RT-PCR) method was applied to observe intercellular cell adhesion molecule-1 (ICAM-1) and E-selectin mRNA level; EC surface ICAM-1 expression was measured with flow cytometry and leukocyte adhesion to EC was assayed with Rose Bengal spectrophotometry technology.
RESULTSHSYA protected EC viability against LPS-induced injury (P <0.05). LPS-induced NF-κB p65 subunit DNA binding (P <0.01) and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor α (IκBα) phosphorylation was inhibited by HSYA. HSYA attenuated LPS triggered ICAM-1 and E-selectin mRNA levels elevation and phosphorylation of p38 MAPK or c-Jun N-terminal kinase MAPK. HSYA also inhibited LPS-induced cell surface ICAM-1 protein expression P <0.01) and leukocyte adhesion to EC (P <0.05).
CONCLUSIONHSYA is effective to protect LPS-induced high expression of endothelium adhesive molecule and inflammatory signal transduction.
Cell Adhesion ; drug effects ; Cell Nucleus ; drug effects ; metabolism ; Cell Survival ; drug effects ; Chalcone ; analogs & derivatives ; chemistry ; pharmacology ; therapeutic use ; E-Selectin ; genetics ; metabolism ; Endothelium, Vascular ; drug effects ; pathology ; Gene Expression Regulation ; drug effects ; Human Umbilical Vein Endothelial Cells ; drug effects ; metabolism ; pathology ; Humans ; I-kappa B Proteins ; metabolism ; Inflammation ; drug therapy ; pathology ; Intercellular Adhesion Molecule-1 ; genetics ; metabolism ; Leukocytes ; cytology ; drug effects ; Lipopolysaccharides ; MAP Kinase Signaling System ; drug effects ; NF-KappaB Inhibitor alpha ; Phosphorylation ; drug effects ; Protective Agents ; pharmacology ; Protein Binding ; drug effects ; Quinones ; chemistry ; pharmacology ; therapeutic use ; RNA, Messenger ; genetics ; metabolism
8.Ultraviolet A Enhances Cathepsin L Expression and Activity via JNK Pathway in Human Dermal Fibroblasts.
Qing-Fang XU ; Yue ZHENG ; Jian CHEN ; Xin-Ya XU ; Zi-Jian GONG ; Yun-Fen HUANG ; Chun LU ; Howard I MAIBACH ; Wei LAI
Chinese Medical Journal 2016;129(23):2853-2860
BACKGROUNDCathepsin L (CatL) is a cysteine protease with strong matrix degradation activity that contributes to photoaging. Mannose phosphate-independent sorting pathways mediate ultraviolet A (UVA)-induced alternate trafficking of CatL. Little is known about signaling pathways involved in the regulation of UVA-induced CatL expression and activity. This study aims to investigate whether a single UVA irradiation affects CatL expression and activity and whether mitogen-activated protein kinase (MAPK)/activator protein-1 (AP-1) pathway is involved in the regulation of UVA-induced CatL expression and activity in human dermal fibroblasts (HDFs).
METHODSPrimary HDFs were exposed to UVA. Cell proliferation was determined by a cell counting kit. UVA-induced CatL production and activity were studied with quantitative real-time reverse transcription polymerase chain reaction (RT-PCR), Western blotting, and fluorimetric assay in cell lysates collected on three consecutive days after irradiation. Time courses of UVA-activated JNK and p38MAPK signaling were examined by Western blotting. Effects of MAPK inhibitors and knockdown of Jun and Fos on UVA-induced CatL expression and activity were investigated by RT-PCR, Western blotting, and fluorimetric assay. Data were analyzed by one-way analysis of variance.
RESULTSUVA significantly increased CatL gene expression, protein abundance, and enzymatic activity for three consecutive days after irradiation (F = 83.11, 56.14, and 71.19, respectively; all P < 0.05). Further investigation demonstrated phosphorylation of JNK and p38MAPK activated by UVA. Importantly, inactivation of JNK pathway significantly decreased UVA-induced CatL expression and activity, which were not affected by p38MAPK inhibition. Moreover, knockdown of Jun and Fos significantly attenuated basal and UVA-induced CatL expression and activity.
CONCLUSIONSUVA enhances CatL production and activity in HDFs, probably by activating JNK and downstreaming AP-1. These findings provide a new possible molecular approach for antiphotoaging therapy.
Anthracenes ; pharmacology ; Cathepsin L ; metabolism ; Cells, Cultured ; Child ; Child, Preschool ; Enzyme Inhibitors ; pharmacology ; Extracellular Signal-Regulated MAP Kinases ; antagonists & inhibitors ; Fibroblasts ; cytology ; drug effects ; metabolism ; radiation effects ; Humans ; Imidazoles ; pharmacology ; MAP Kinase Signaling System ; drug effects ; radiation effects ; Oncogene Proteins v-fos ; genetics ; metabolism ; Proto-Oncogene Proteins c-jun ; genetics ; metabolism ; Pyridines ; pharmacology ; Skin ; cytology ; Ultraviolet Rays
9.Agglutinin isolated from Arisema heterophyllum Blume induces apoptosis and autophagy in A549 cells through inhibiting PI3K/Akt pathway and inducing ER stress.
Li-Xing FENG ; Peng SUN ; Tian MI ; Miao LIU ; Wang LIU ; Si YAO ; Yi-Min CAO ; Xiao-Lu YU ; Wan-Ying WU ; Bao-Hong JIANG ; Min YANG ; De-An GUO ; Xuan LIU
Chinese Journal of Natural Medicines (English Ed.) 2016;14(11):856-864
Arisaema heterophyllum Blume is one of the three medicinal plants known as traditional Chinese medicine Rhizoma Arisaematis (RA). RA has been popularly used to treat patients with convulsions, inflammation, and cancer for a long time. However, the underlying mechanisms for RA effects are still unclear. The present study was designed to determine the cytotoxicity of agglutinin isolated from Arisema heterophyllum Blume (AHA) and explore the possible mechanisms in human non-small-cell lung cancer A549 cells. AHA with purity up to 95% was isolated and purified from Arisaema heterophyllum Blume using hydrophobic interaction chromatography. AHA dose-dependently inhibited the proliferation of A549 cells and induced G phase cell cycle arrest. AHA induced apoptosis by up-regulating pro-apoptotic Bax, decreasing anti-apoptotic Bcl-2, and activating caspase-9 and caspase-3. In A549 cells treated with AHA, the PI3K/Akt pathway was inhibited. Furthermore, AHA induced increase in the levels of ER stress markers such as phosphorylated eukaryotic initiation factor 2α (p-eIF2α), C/EBP-homologous protein (CHOP), inositol-requiring enzyme 1α (IRE1α), and phosphorylated c-Jun NH-terminal kinase (p-JNK). AHA also induced autophagy in A549 cells. Staining of acidic vesicular organelles (AVOs) and increase in the levels of LC3II and ATG7 were observed in AHA-treated cells. These findings suggested that AHA might be one of the active components with anti-cancer effects in Arisaema heterophyllum Blume. In conclusion, cytotoxicity of AHA on cancer cells might be related to its effects on apoptosis and autophagy through inhibition of PI3K/Akt pathway and induction of ER stress.
A549 Cells
;
Agglutinins
;
pharmacology
;
Apoptosis
;
drug effects
;
Arisaema
;
chemistry
;
Autophagy
;
drug effects
;
Carcinoma, Non-Small-Cell Lung
;
drug therapy
;
enzymology
;
metabolism
;
physiopathology
;
Cell Line, Tumor
;
Drugs, Chinese Herbal
;
pharmacology
;
Endoplasmic Reticulum Stress
;
drug effects
;
Humans
;
MAP Kinase Signaling System
;
drug effects
;
Phosphatidylinositol 3-Kinases
;
genetics
;
metabolism
;
Phosphorylation
;
drug effects
;
Proto-Oncogene Proteins c-akt
;
genetics
;
metabolism
10.Regulatory effects of AT₁R-TRAF6-MAPKs signaling on proliferation of intermittent hypoxia-induced human umbilical vein endothelial cells.
Jin SHANG ; Xue-Ling GUO ; Yan DENG ; Xiao YUAN ; Hui-Guo LIU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(4):495-501
Endothelial dysfunction induced by intermittent hypoxia (IH) participates in obstructive sleep apnea syndrome (OSAS)-associated cardiovascular disorders. Myeloid differentiation primary response 88 (MyD88) and tumor necrosis factor receptor-associated factor 6 (TRAF6) regulate numerous downstream adaptors like mitogen-activated protein kinases (MAPKs) and the subsequent oxidative stress and inflammatory responses. This study aimed to characterize the role of MyD88/TRAF6 in IH-treated cell function and its associated signaling. Human umbilical vein endothelial cells (HUVECs) were randomly exposed to IH or normoxia for 0, 2, 4 and 6 h. Western blotting was used to detect the expression pattern of target gene proteins [angiotensin 1 receptor (AT1R), p-ERK1/2, p-p38MAPK, MyD88 and TRAF6], and the relationships among these target genes down-regulated by the corresponding inhibitors were studied. Finally, the influence of these target genes on proliferation of HUVECs was also assessed by EdU analysis. Protein levels of AT1R, TRAF6 and p-ERK1/2 were increased after IH exposure, with a slight rise in MyD88 and a dynamic change in p-p38MAPK. The down-regulation of TRAF6 by siRNA reduced ERK1/2 phosphorylation during IH without any effects on AT1R. Blockade of AT1R with valsartan decreased TRAF6 and p-ERK1/2 protein expression after IH exposure. ERK1/2 inhibition with PD98059 suppressed only AT1R expression. IH promoted HUVECs proliferation, which was significantly suppressed by the inhibition of TRAF6, AT1R and ERK1/2. The findings demonstrate that TRAF6 regulates the proliferation of HUVECs exposed to short-term IH by modulating cell signaling involving ERK1/2 downstream of AT1R. Targeting the AT1R-TRAF6-p-ERK1/2 signaling pathway might be helpful in restoring endothelial function.
Cell Hypoxia
;
Cell Proliferation
;
Cells, Cultured
;
Gene Expression Regulation
;
Human Umbilical Vein Endothelial Cells
;
physiology
;
Humans
;
MAP Kinase Signaling System
;
drug effects
;
Phosphorylation
;
Receptor, Angiotensin, Type 1
;
genetics
;
metabolism
;
TNF Receptor-Associated Factor 6
;
genetics
;
metabolism
;
Valsartan
;
pharmacology

Result Analysis
Print
Save
E-mail