1.Effect of Eucommiae Cortex extract mediated by ERβ/JNK pathway on learning and memory ability of APP/PS1 double-transgenic mice.
Yue LI ; Li-Li ZHANG ; Can ZHAO ; Hong-Mei ZHAO ; Yan WANG ; Jin-Lei FU ; Jie ZHANG ; Ning ZHANG ; Hong-Dan XU
China Journal of Chinese Materia Medica 2025;50(2):285-293
To study the ameliorative effect of Eucommiae Cortex extract on spatial learning disabilities in APP/PS1 double-transgenic mice and explore its relationship with estrogen receptor β(ERβ)/c-Jun N-terminal kinase(JNK) signaling pathway, sixty 3-month-old male APP/PS1 mice were randomly divided into a model group, an anti-brain failure capsule group(0.585 g·kg~(-1)), a donepezil hydrochloride group(0.65 mg·kg~(-1)), and a Eucommiae Cortex extract group(1.3 g·kg~(-1)), and 15 C57BL/6 mice of the same genetic background were set as WT control group. The learning and memory ability of mice was assessed by the Morris water maze test(MWM), the passive avoidance test(PAT), and the novel object recognition test(NOR). The histomorphological and cellular ultrastructural features of the hippocampal region of the mice were observed by hematoxylin-eosin(HE) staining and transmission electron microscopy(TEM); the molecular docking validation of the key active ingredients and the key targets was performed by using AutoDock Vina software, and the immunohistochemical method(IHC) was used to detect the ERβ expression in the dentate gyrus(DG) area of mouse hippocampus. Western blot(WB) was utilized to detect the expression of ERβ, p-JNK, and JNK in mouse hippocampal area. Compared with those in the WT control group, the results of behavioral experiments showed that the latency of the mice in the model group was significantly increased, the number of platform traversals, and the target quadrant residence time were significantly decreased in the MWM. The evasion latency was significantly reduced, and the number of errors was significantly increased in the PAT. The index of recognition of novel objects was significantly reduced in the NOR. The results of HE staining indicated that the hippocampal area of mice in the model group showed a decrease in the number of neurons, disorganization of pyramidal cell arrangement, nucleus consolidation, and other changes. TEM results showed that some neuronal nuclei in the hippocampal area had a consolidated state, slightly thickened and aberrant nuclear membranes, and fewer intracytoplasmic nidus bodies; the IHC results showed that the expression of ERβ in the hippocampal DG area of the mice was reduced. The WB results showed that the ERβ expression in the hippocampal tissue was decreased, and the p-JNK/JNK level was elevated. Compared with the model group, the Eucommiae Cortex extract group showed a significant decrease in latency, and increase in number of platform traversals and target quadrant residence time in the MWM, a significant increase in evasion latency and decrease in number of errors in the PAT, and a significant increase in the index of recognition of novel objects in the NOR. In addition, there was an increase in the number of neurons in the hippocampal area of mice. The pyramidal cells tended to be arranged in an orderly manner; the nuclei of neurons in the hippocampal area were in a better state; the expression of ERβ in the hippocampal DG area of the mice was elevated; the expression of ERβ in the hippocampal tissue was elevated, and the level of p-JNK/JNK was reduced. The effects of donepezil hydrochloride group and anti-brain failure capsule on APP/PS1 mice in terms of behavioral, HE, and TEM indexes were similar to those of Eucommiae Cortex extract, and there was no significant difference between donepezil hydrochloride group and the model group in IHC and WB experiments, and the results of molecular docking indicated that the estrogen-like components in Eucommiae Cortex extract were tightly bound to ERβ. In conclusion, the binding of Eucommiae Cortex extract to estrogen receptors, regulation of ERβ expression, and activation of ERβ/JNK signaling pathway may be one of the key mechanisms by which it improves the learning and memory ability of APP/PS1 mice.
Animals
;
Male
;
Mice
;
Mice, Transgenic
;
Memory/drug effects*
;
Mice, Inbred C57BL
;
Estrogen Receptor beta/genetics*
;
Eucommiaceae/chemistry*
;
Alzheimer Disease/psychology*
;
Amyloid beta-Protein Precursor/metabolism*
;
Presenilin-1/metabolism*
;
Humans
;
MAP Kinase Signaling System/drug effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Hippocampus/metabolism*
;
Maze Learning/drug effects*
;
Learning/drug effects*
2.Interferon-λ1 improves glucocorticoid resistance caused by respiratory syncytial virus by regulating the p38 mitogen-activated protein kinase signaling pathway.
Li PENG ; Yao LIU ; Fang-Cai LI ; Xiao-Fang DING ; Xiao-Juan LIN ; Tu-Hong YANG ; Li-Li ZHONG
Chinese Journal of Contemporary Pediatrics 2025;27(8):1011-1016
OBJECTIVES:
To investigate the effect of interferon-λ1 (IFN-λ1) on glucocorticoid (GC) resistance in human bronchial epithelial cells (HBECs) stimulated by respiratory syncytial virus (RSV).
METHODS:
HBECs were divided into five groups: control, dexamethasone, IFN-λ1, RSV, and RSV+IFN-λ1. CCK-8 assay was used to measure the effect of different concentrations of IFN-λ1 on the viability of HBECs, and the sensitivity of HBECs to dexamethasone was measured in each group. Quantitative real-time PCR was used to measure the mRNA expression levels of p38 mitogen-activated protein kinase (p38 MAPK), glucocorticoid receptor (GR), and MAPK phosphatase-1 (MKP-1). Western blot was used to measure the protein expression level of GR in cell nucleus and cytoplasm, and the nuclear/cytoplasmic ratio of GR was calculated.
RESULTS:
At 24 and 72 hours, the proliferation activity of HBECs increased with the increase in IFN-λ1 concentration in a dose- and time-dependent manner (P˂0.05). Compared with the RSV group, the RSV+IFN-λ1 group had significant reductions in the half-maximal inhibitory concentration of dexamethasone and the mRNA expression level of p38 MAPK (P<0.05), as well as significant increases in the mRNA expression levels of GR and MKP-1, the level of GR in cell nucleus and cytoplasm, and the nuclear/cytoplasmic GR ratio (P<0.05).
CONCLUSIONS
IFN-λ1 can inhibit the p38 MAPK pathway by upregulating MKP-1, promote the nuclear translocation of GR, and thus ameliorate GC resistance in HBECs.
Humans
;
p38 Mitogen-Activated Protein Kinases/genetics*
;
Glucocorticoids/pharmacology*
;
Receptors, Glucocorticoid/analysis*
;
Dual Specificity Phosphatase 1/physiology*
;
Dexamethasone/pharmacology*
;
Drug Resistance/drug effects*
;
Respiratory Syncytial Viruses
;
Interferons/pharmacology*
;
MAP Kinase Signaling System/drug effects*
;
Epithelial Cells/drug effects*
;
Signal Transduction/drug effects*
;
Cells, Cultured
3.Ginsenoside Rb3 regulates the phosphorrylated extracellular signal-regulated kinase signaling pathway to alleviate inflammatory responses and promote osteogenesis in rats with periodontitis.
Xueying ZHANG ; Xin MENG ; Zhizhen LIU ; Kang ZHANG ; Honghai JI ; Minmin SUN
West China Journal of Stomatology 2025;43(2):236-248
OBJECTIVES:
To explore the promoting effect of ginsenoside Rb3 (Rb3) on osteogenesis in periodontitis environment, and to explain its mechanism.
METHODS:
Human periodontal ligament stem cells (hPDLSCs) were cultured by tissue block method and identified by flow cytometry. Cell counting kit-8 (CCK8) method and calcein acetoxymethyl ester/propidium iodide staining were used to detect the effect of Rb3 on the viability of hPDLSCs cells. In vitro cell experiments were divided into control group, 10 μg/mL lipopolysaccharides (LPS) group, 10 μg/mL LPS+100 μmol/L Rb3 group and 10 μg/mL LPS+200 μmol/L Rb3 group. Alkaline phosphatase (ALP) staining was used to detect the ALP activity of hPDLSCs in each group after osteogenesis induction. The expression of hPDLSCs interleukin-6 (IL-6), interleukin-8 (IL-8), runt-related transcription factor 2 (RUNX2) and transforming growth factor-β (TGF-β)genes in each group after osteogenesis was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR) method. Western blot was used to detect the protein expression of hPDLSCs phosphorrylated extracellular signal-regulated kinase (p-ERK) in each group. Sprague-Dawley rats were randomly divided into the control group, ligation group and ligation+Rb3 group. The left molar-maxillary tissue was subjected to micro-computed tomography (micro-CT) scanning. After the scanning, the left molar-maxilla was made into periodontal tissue sections. Hematoxylin-eosin (HE) staining was used to detect the infiltration and loss of adhesion of inflammatory cells. Masson staining was used to detect the destruction of gingival collagen fibers. Immunofluorescence staining was used to detect the protein expression of RUNX2 and p-ERK. The expression of TGF-β in rat gingival tissue was detected by qRT-PCR. The protein expression of IL-6 in peripheral serum of rats was detected by enzyme-linked immunosorbent assay (ELISA). Flow cytometry was used to detect the proportion of Treg cells in rat heart blood. The experimental data were statistically analyzed by Graph Pad Prism10.1.2 software.
RESULTS:
Rb3 had no effect on the cell activity of hPDLSCs. The results of qRT-PCR and ALP staining showed that Rb3 could inhibit the gene expression of IL-6 and IL-8 in inflammatory hPDLSCs, promote TGF-β gene and promote the osteogenic differentiation of inflammatory hPDLSCs. Western blot showed that Rb3 inhibited the protein expression of inflammatory hPDLSCs p-ERK. The results from micro-CT, Masson staining, and HE staining demonstrated that Rb3 promotes alveolar bone formation in rats with periodontitis, while simultaneously inhibiting the destruction of periodontal fibrous tissue, reducing attachment loss, and suppressing inflammatory cell infiltration. The results of flow cytometry showed that Rb3 could promote the differentiation of Treg cells in peripheral blood of periodontitis rats. The results of ELISA and qRT-PCR showed that Rb3 could inhibit the protein expression of IL-6 and promote the gene expression of TGF-β in periodontitis rats. Immunofluorescence results showed that Rb3 could promote the protein expression of RUNX2 and inhibit the protein expression of p-ERK in periodontitis rats.
CONCLUSIONS
Rb3 can reduce the inflammatory reaction of periodontal tissues in periodontitis rats, and promote the osteogenic differentiation of hPDLSCs by regulating p-ERK pathways.
Animals
;
Ginsenosides/pharmacology*
;
Osteogenesis/drug effects*
;
Periodontitis/metabolism*
;
Rats
;
Periodontal Ligament/cytology*
;
Humans
;
Core Binding Factor Alpha 1 Subunit/metabolism*
;
Stem Cells/drug effects*
;
Interleukin-6/metabolism*
;
Rats, Sprague-Dawley
;
Interleukin-8/metabolism*
;
Cells, Cultured
;
MAP Kinase Signaling System/drug effects*
;
Transforming Growth Factor beta/metabolism*
;
Signal Transduction
;
Male
;
Phosphorylation
;
Lipopolysaccharides
;
Extracellular Signal-Regulated MAP Kinases/metabolism*
;
Alkaline Phosphatase/metabolism*
4.Effects of Xihuang Pills on angiogenesis, invasion, and metastasis of p rostate cancer based on FAK/Src/ERK pathway.
Yan LONG ; Xin-Jun LUO ; Bo ZOU ; Xin-Jun DAI ; Fang-Zhi FU ; Biao WANG ; Li-Tong WU ; Yong-Rong WU ; Qing ZHOU ; Xue-Fei TIAN
China Journal of Chinese Materia Medica 2024;49(23):6378-6388
Based on the focal adhesion kinase(FAK)/steroid receptor coactivator(Src)/extracellular regulated protein kinase(ERK) pathway, this study explored the effects of Xihuang Pills on angiogenesis, invasion, and metastasis in prostate cancer. Liquid chromatography-tandem mass spectrometry(LC-MS/MS) was used to analyze and identify the active ingredients of Xihuang Pills. Bioinformatics techniques, including R language and Perl programs, were employed to analyze the interactions between prostate cancer-related targets and the potential targets of Xihuang Pills. A subcutaneous transplantation tumor model of prostate cancer was established in nude mice using PC3 cells to verify the efficacy and molecular mechanisms of Xihuang Pills. In vitro cellular experiments, including cell proliferation assays(CCK-8), Transwell assays, scratch assays, real-time quantitative reverse transcription PCR, and Western blot, were used to detect the effects of Xihuang Pills on the proliferation, invasion, and migration of prostate cancer cells, as well as on FAK/Src/ERK pathway-related targets. LC-MS/MS identified 99 active ingredients in Xihuang Pills, including gallic acid, gentisic acid, artemisinin, corilagin, phenylbutazone-glucoside, thujic acid, and arecoic acid B. Network pharmacological analysis of the active ingredients in Xihuang Pills revealed that the FAK/Src/ERK signaling pathway was a key pathway in its anti-prostate cancer effects. In vivo and in vitro experiments confirmed that Xihuang Pills significantly inhibited the proliferation, invasion, and migration of PC3 and LNCaP cells, suppressed the growth of PC3 subcutaneous tumors, and reduced the protein expression levels related to the FAK/Src/ERK signaling pathway. In conclusion, the inhibition of angiogenesis, invasion, and metastasis by regulating the FAK/Src/ERK pathway is one of the mechanisms by which Xihuang Pills exert anti-prostate cancer effects.
Humans
;
Male
;
Prostatic Neoplasms/enzymology*
;
Drugs, Chinese Herbal/chemistry*
;
Animals
;
Mice
;
Cell Proliferation/drug effects*
;
Mice, Nude
;
Cell Movement/drug effects*
;
Cell Line, Tumor
;
src-Family Kinases/genetics*
;
Neovascularization, Pathologic/metabolism*
;
Neoplasm Metastasis
;
Neoplasm Invasiveness
;
Focal Adhesion Kinase 1/genetics*
;
Extracellular Signal-Regulated MAP Kinases/genetics*
;
MAP Kinase Signaling System/drug effects*
;
Focal Adhesion Protein-Tyrosine Kinases/genetics*
;
Signal Transduction/drug effects*
;
Angiogenesis
5.Type III secretory protein SINC of Chlamydia psittaci promotes host cell autophagy by activating the MAPK/ERK signaling pathway.
Xin Ding ZENG ; Li CHEN ; Peng ZHOU ; Ting TANG ; Xi CHEN ; Dan HU ; Chuan WANG ; Li Li CHEN
Journal of Southern Medical University 2023;43(2):294-299
OBJECTIVE:
To investigate the effects of SINC, a secreted protein of Chlamydia psittaci, on autophagy of host cells and the role of MAPK/ERK signaling pathway in mediating SINC-induced autophagy.
METHODS:
RAW 264.7 cells treated with recombinant SINC were examined for changes in expression levels of LC3-II, Beclin-1, phosphorylated and total ERK1/2 using Western blotting. The expression level of LC3 in the treated cells was detected using immunofluorescence analysis, and the formation of autophagosomes and autolysosomes was observed with transmission electron microscopy (TEM). The effect of pretreatment with U0126 (a specific ERK inhibitor) on the expression levels of LC3-II and Beclin-1 in RAW 264.7 cells exposed to different concentrations of SINC was examined using Western blotting, and LC3 puncta in the cells was detected with immunofluorescence analysis.
RESULTS:
The expression levels of LC3-II and Beclin-1 were the highest in RAW 264.7 cells treated with 2 μg/mL SINC for 12h. Immunofluorescence analysis showed exposure to SINC significantly increased the number of cells containing LC3 puncta, where the presence of autophagosomes and autolysosomes was detected. Exposure to 2 μg/mL SINC for 15 min resulted in the most significant increase of the ratios of p-ERK1/2/ERK1/2 in RAW 264.7 cells. Pretreatment of the cells with U0126 prior to SINC exposure significantly decreased the ratio of p-ERK1/2/ERK1/2, lowered the expression levels of LC3-II and Beclin-1, and decreased LC3 aggregation in the cells.
CONCLUSIONS
SINC exposure can induce autophagy in RAW 264.7 cells by activating the MAPK/ERK signaling pathway.
MAP Kinase Signaling System
;
Chlamydophila psittaci
;
Beclin-1
;
Signal Transduction
;
Autophagy
6.Y-box-binding protein 1 mediates sorafenib resistance via the extracellular signal regulated-protein kinase pathway in hepatoma cells.
Ting LIU ; Xiaoli XIE ; Sheng Xiong CHEN ; Yi Jun WANG ; Hui Qing JIANG
Chinese Journal of Hepatology 2023;31(4):401-407
Objective: To investigate the effect and possible mechanism of Y-box-binding protein 1 (YB-1) on sorafenib resistance in hepatoma cells. Methods: Lentiviral vectors with YB-1 overexpression and knockdown were constructed, respectively, to stimulate human hepatoma cell lines (HepG2 and Huh7) alone or in combination with sorafenib.The overexpression part of the experiment was divided into four groups: overexpression control group (Lv-NC), YB-1 overexpression group (Lv-YB-1), overexpression control combined with sorafenib resistance group (Lv-NC+sorafenib), YB-1 overexpression combined with sorafenib resistance group (Lv-YB-1 + sorafenib). The knockdown part of the experiment was also divided into four groups: knockdown control group (Lv-shNC), YB-1 knockdown group (Lv-shYB-1), knockdown control combined with sorafenib resistance group (Lv-shNC + sorafenib), YB-1 knockdown combined with sorafenib resistance group (Lv-shYB-1 + sorafenib). The occurrence of cell apoptosis was detected by TUNEL. The protein expression levels of phosphorylated (p)-ERK and ERK, key proteins in the extracellular regulatory protein kinase (ERK) signaling pathway, were detected by Western blot and quantified by ImageJ software. Subcutaneous tumorigenesis experiments were performed in nude mice. The effect of YB-1 on the efficacy of sorafenib was verified in vivo. The comparison between the two sets of data was carried out by an independent sample t-test. One-way ANOVA was used for comparisons between the three groups of data above. Results: Sorafenib had accelerated the occurrence of apoptosis in hepatoma cells, while YB-1 overexpression had inhibited cell apoptosis, and at the same time also inhibited the apoptosis-accelerating impact of sorafenib. On the contrary, YB-1 knockdown accelerated cell apoptosis and amplified the induction effect of sorafenib on apoptosis. Furthermore, sorafenib resistance had down-regulated p-ERK levels (HepG2: Lv-NC 0.685 ± 0.143, Lv-NC + sorafenib 0.315 ± 0.168, P < 0.05; Huh7: Lv-NC 0.576 ± 0.078, Lv-NC + sorafenib 0.150 ± 0.131, P < 0.01), whereas YB-1 overexpression had inhibited sorafenib resistance p-ERK reduction (HepG2: Lv-NC + sorafenib 0.315 ± 0.168, Lv-YB-1 + sorafenib 0.688 ± 0.042, P < 0.05; Huh7: Lv-NC + sorafenib 0.150 ± 0.131, Lv-YB-1 + sorafenib 0.553 ± 0.041, P < 0.05). YB-1 knockdown further increased sorafenib-induced p-ERK downregulation (HepG2: Lv-shNC + sorafenib 0.911 ± 0.252, Lv-shYB-1 + sorafenib 0.500 ± 0.201, P < 0.05; Huh7: Lv-shNC + sorafenib 0.577 ± 0.082, Lv-shYB-1 + sorafenib 0.350 ± 0.143, P < 0.05), which was further verified in naked mice (Lv-shNC + sorafenib 0.812 ± 0.279, Lv-shYB-1 + sorafenib 0.352 ± 0.109, P < 0.05). Conclusion: YB-1 mediates the occurrence of sorafenib resistance via the ERK signaling pathway in hepatoma cells.
Humans
;
Cell Line, Tumor
;
Sorafenib/pharmacology*
;
Drug Resistance, Neoplasm
;
Y-Box-Binding Protein 1/metabolism*
;
Carcinoma, Hepatocellular/metabolism*
;
MAP Kinase Signaling System
;
Animals
;
Mice
;
Mice, Nude
7.Acteoside promotes autophagy and apoptosis of hepatoma cells by regulating JNK signaling pathway.
Yu-Jing HE ; Ying ZHENG ; Chu-Yi LI ; Liu-Lu GAO ; Jun-Ke WANG ; Bin LI ; Li-Xia LU ; Pan WANG ; Xiao-Hui YU ; Jiu-Cong ZHANG
China Journal of Chinese Materia Medica 2023;48(9):2343-2351
This study explored the molecular mechanism of acteoside against hepatoma 22(H22) tumor in mice through c-Jun N-terminal kinase(JNK) signaling pathway. H22 cells were subcutaneously inoculated in 50 male BALB/c mice, and then the model mice were classified into model group, low-dose, medium-dose, and high-dose acteoside groups, and cisplatin group. The administration lasted 2 weeks for each group(5 consecutive days/week). The general conditions of mice in each group, such as mental status, diet intake, water intake, activity, and fur were observed. The body weight, tumor volume, tumor weight, and tumor-inhibiting rate were compared before and after administration. Morphological changes of liver cancer tissues were observed based on hematoxylin and eosin(HE) staining, and the expression of phosphorylated(p)-JNK, JNK, B-cell lymphoma-2(Bcl-2), Beclin-1, and light chain 3(LC3) in each tissue was detected by immunohistochemistry and Western blot. qRT-PCR was performed to detect the mRNA expression of JNK, Bcl-2, Beclin-1, and LC3. The general conditions of mice in model and low-dose acteoside groups were poor, while the general conditions of mice in the remaining three groups were improved. The body weight of mice in medium-dose acteoside group, high-dose acteoside group, and cisplatin group was smaller than that in model group(P<0.01). The tumor volume in model group was insignificantly different from that in low-dose acteoside group, and the volume in cisplatin group showed no significant difference from that in high-dose acteoside group. Tumor volume and weight in medium-dose and high-dose acteoside groups and cisplatin group were lower than those in the model group(P<0.001). The tumor-inhibiting rates were 10.72%, 40.32%, 53.79%, and 56.44% in the low-dose, medium-dose, and high-dose acteoside groups and cisplatin group, respectively. HE staining showed gradual decrease in the count of hepatoma cells and increasing sign of cell necrosis in the acteoside and cisplatin groups, and the necrosis was particularly obvious in the high-dose acteoside group and cisplatin group. Immunohistochemical results suggested that the expression of Beclin-1, LC3, p-JNK, and JNK was up-regulated in acteoside and cisplatin groups(P<0.05). The results of immunohistochemistry, Western blot, and qRT-PCR indicated that the expression of Bcl-2 was down-regulated in the medium-dose and high-dose acteoside groups and cisplatin group(P<0.01). Western blot showed that the expression of Beclin-1, LC3, and p-JNK was up-regulated in acteoside and cisplatin groups(P<0.01), and there was no difference in the expression of JNK among groups. qRT-PCR results showed that the levels of Beclin-1 and LC3 mRNA were up-regulated in the acteoside and cisplatin groups(P<0.05), and the level of JNK mRNA was up-regulated in medium-dose and high-dose acteoside groups and cisplatin group(P<0.001). Acteoside promotes apoptosis and autophagy of H22 cells in mice hepatoma cells by up-regulating the JNK signaling pathway, thus inhibiting tumor growth.
Male
;
Animals
;
Mice
;
Cisplatin/pharmacology*
;
Carcinoma, Hepatocellular/genetics*
;
MAP Kinase Signaling System
;
Beclin-1
;
Apoptosis
;
Liver Neoplasms/genetics*
;
Necrosis
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Cell Line, Tumor
;
RNA, Messenger/metabolism*
;
Autophagy
8.The combination of EGCG with warfarin reduces deep vein thrombosis in rabbits through modulating HIF-1α and VEGF via the PI3K/AKT and ERK1/2 signaling pathways.
Yan LI ; Jing-Ping GE ; Ke MA ; Yuan-Yuan YIN ; Juan HE ; Jian-Ping GU
Chinese Journal of Natural Medicines (English Ed.) 2022;20(9):679-690
Deep venous thrombosis (DVT) poses a major challenge to public health worldwide. Endothelial cell injury evokes inflammatory and oxidative responses that contribute to thrombus formation. Tea polyphenol (TP) in the form of epigallocatechin-3-gallate (EGCG) has anti-inflammatory and oxidative effect that may ameliorate DVT. However, the precise mechanism remains incompletely understood. The current study was designed to investigate the anti-DVT mechanism of EGCG in combination with warfarin (an oral anticoagulant). Rabbits were randomly divided into five groups. A DVT model of rats was established through ligation of the inferior vena cava (IVC) and left common iliac vein, and the animals were orally administered with EGCG, warfarin, or vehicle for seven days. In vitro studies included pretreatment of human umbilical vein endothelial cells (HUVECs) with different concentrations of EGCG for 2 h before exposure to hydrogen peroxide. Thrombus weight and length were examined. Histopathological changes were observed by hematoxylin-eosin staining. Blood samples were collected for detecting coagulation function, including thrombin and prothrombin times, activated partial thromboplastin time, and fibrinogen levels. Protein expression in thrombosed IVCs and HUVECs was evaluated by Western blot, immunohistochemical analysis, and/or immunofluorescence staining. RT-qPCR was used to determine the levels of AGTR-1 and VEGF mRNA in IVCs and HUVECs. The viability of HUVECs was examined by CCK-8 assay. Flow cytometry was performed to detect cell apoptosis and ROS generation was assessed by 2',7'-dichlorofluorescein diacetate reagent. In vitro and invivo studies showed that EGCG combined with warfarin significantly reduced thrombus weight and length, and apoptosis in HUVECs. Our findings indicated that the combination of EGCG and warfarin protects HUVECs from oxidative stress and prevents apoptosis. However, HIF-1α silencing weakened these effects, which indicated that HIF-1α may participate in DVT. Furthermore, HIF-1α silencing significantly up-regulated cell apoptosis and ROS generation, and enhanced VEGF expression and the activation of the PI3K/AKT and ERK1/2 signaling pathways. In conclusion, our results indicate that EGCG combined with warfarin modifies HIF-1α and VEGF to prevent DVT in rabbits through anti-inflammation via the PI3K/AKT and ERK1/2 signaling pathways.
Animals
;
Anticoagulants/pharmacology*
;
Catechin/analogs & derivatives*
;
Eosine Yellowish-(YS)/pharmacology*
;
Fibrinogen/pharmacology*
;
Hematoxylin/pharmacology*
;
Human Umbilical Vein Endothelial Cells
;
Humans
;
Hydrogen Peroxide/pharmacology*
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
MAP Kinase Signaling System
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Polyphenols/pharmacology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
RNA, Messenger
;
Rabbits
;
Rats
;
Reactive Oxygen Species/metabolism*
;
Signal Transduction
;
Sincalide/pharmacology*
;
Tea
;
Thrombin/pharmacology*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Venous Thrombosis/pathology*
;
Warfarin/pharmacology*
9.Clinical analysis of a child with cardio-facio-cutaneous syndrome due to a de novo variant of MAP2K1 gene.
Hongyao CAO ; Guanglei TONG ; Ru HUANG ; Taocheng ZHOU ; Weiwei ZHANG
Chinese Journal of Medical Genetics 2022;39(10):1129-1134
OBJECTIVE:
To explore the genotype-phenotype correlation of a patient with cardio-facio-cutaneous syndrome (CFCS) due to variant of the MAP2K1 gene.
METHODS:
DNA was extracted from peripheral blood samples of the infant and his parents and subjected to whole exome sequencing. Candidate variant was verified by Sanger sequencing.
RESULTS:
The patient had typical CFCS facies and developmental delay, and was found to harbor a de novo heterozygous c.389A>G (p.Tyr130Cys) missense variant in exon 3 of the MAP2K1 gene. Based on the American college of Medical Genetics and Genomics guidelines, this variant was classified as likely pathogenic.
CONCLUSION
This patient has differed from previously reported cases by having no cardiac anomaly or seizures but typical facial features and skin abnormalities accompanied by growth retardation, intellectual impairment, and urinary malformation. It has therefore enriched the phenotypic spectrum of CFCS due to variants of the MAP2K1 gene.
Ectodermal Dysplasia/genetics*
;
Facies
;
Failure to Thrive/genetics*
;
Heart Defects, Congenital
;
Humans
;
MAP Kinase Kinase 1/genetics*
;
Mutation

Result Analysis
Print
Save
E-mail