1.Progress in the Study of Spindle Assembly Checkpoint in Lung Cancer.
Xinchen QIN ; Yao ZHANG ; Haijie YU ; Lijuan MA
Chinese Journal of Lung Cancer 2023;26(4):310-318
Spindle assembly checkpoint (SAC) is a protective mechanism for cells to undergo accurate mitosis. SAC prevented chromosome segregation when kinetochores were not, or incorrectly attached to microtubules in the anaphase of mitosis, thus avoiding aneuploid chromosomes in daughter cells. Aneuploidy and altered expression of SAC component proteins are common in different cancers, including lung cancer. Therefore, SAC is a potential new target for lung cancer therapy. Five small molecule inhibitors of monopolar spindle 1 (MPS1), an upstream component protein of SAC, have entered clinical trials. This article introduces the biological functions of SAC, summarizes the abnormal expression of SAC component proteins in various cancers and the research progress of MPS1 inhibitors, and expects to provide a reference for the future development of lung cancer therapeutic strategies targeting SAC components.
.
Humans
;
Cell Cycle Proteins/metabolism*
;
Spindle Apparatus/metabolism*
;
Protein Serine-Threonine Kinases/metabolism*
;
M Phase Cell Cycle Checkpoints/genetics*
;
Lung Neoplasms/metabolism*
2.CUDC-101 as a dual-target inhibitor of EGFR and HDAC enhances the anti-myeloma effects of bortezomib by regulating G2/M cell cycle arrest.
Wen CAO ; Shunnan YAO ; Anqi LI ; Haoguang CHEN ; Enfan ZHANG ; Liqin CAO ; Jinna ZHANG ; Yifan HOU ; Zhenfeng DAI ; Jing CHEN ; Xi HUANG ; Li YANG ; Zhen CAI
Journal of Zhejiang University. Science. B 2023;24(5):442-454
CUDC-101, an effective and multi-target inhibitor of epidermal growth factor receptor (EGFR), histone deacetylase (HDAC), and human epidermal growth factor receptor 2 (HER2), has been reported to inhibit many kinds of cancers, such as acute promyelocytic leukemia and non-Hodgkin's lymphoma. However, no studies have yet investigated whether CUDC-101 is effective against myeloma. Herein, we proved that CUDC-101 effectively inhibits the proliferation of multiple myeloma (MM) cell lines and induces cell apoptosis in a time- and dose-dependent manner. Moreover, CUDC-101 markedly blocked the signaling pathway of EGFR/phosphoinositide-3-kinase (PI3K) and HDAC, and regulated the cell cycle G2/M arrest. Moreover, we revealed through in vivo experiment that CUDC-101 is a potent anti-myeloma drug. Bortezomib is one of the important drugs in MM treatment, and we investigated whether CUDC-101 has a synergistic or additive effect with bortezomib. The results showed that this drug combination had a synergistic anti-myeloma effect by inducing G2/M phase blockade. Collectively, our findings revealed that CUDC-101 could act on its own or in conjunction with bortezomib, which provides insights into exploring new strategies for MM treatment.
Humans
;
Antineoplastic Agents/therapeutic use*
;
Apoptosis
;
Bortezomib/pharmacology*
;
Cell Line, Tumor
;
Cell Proliferation
;
ErbB Receptors/antagonists & inhibitors*
;
G2 Phase Cell Cycle Checkpoints
;
Histone Deacetylase Inhibitors/pharmacology*
;
Histone Deacetylases/metabolism*
;
M Cells
;
Multiple Myeloma/drug therapy*
3.Spindle assembly checkpoint complex-related genes TTK and MAD2L1 are over-expressed in lung adenocarcinoma: a big data and bioinformatics analysis.
Zhu LIU ; Zeqin GUO ; Lili LONG ; Yanpei ZHANG ; Yuwen LU ; Dehua WU ; Zhongyi DONG
Journal of Southern Medical University 2020;40(10):1422-1431
OBJECTIVE:
To screen the key genes related to the prognosis of lung adenocarcinoma through big data analysis and explore their clinical value and potential mechanism.
METHODS:
We analyzed GSE18842, GSE27262, and GSE33532 gene expression profile data obtained from the Gene Expression Omnibus (GEO). Bioinformatics methods were used to screen the differentially expressed genes in lung adenocarcinoma tissues and KEGG and GO enrichment analysis was performed, followed by PPI interaction network analysis, module analysis, differential expression analysis, and prognosis analysis. The expressions of MAD2L1 and TTK by immunohistochemistry were verified in 35 non-small cell lung cancer specimens and paired adjacent tissues.
RESULTS:
We identified a total of 256 genes that showed significant differential expressions in lung adenocarcinoma, including 66 up-regulated and 190 down-regulated genes. Thirty-two up-regulated core genes were screened by functional analysis, and among them 29 were shown to significantly correlate with a poor prognosis of patients with lung adenocarcinoma. All the 29 genes were highly expressed in lung adenocarcinoma tissues compared with normal lung tissues and were mainly enriched in cell cycle pathways. Seven of these key genes were closely related to the spindle assembly checkpoint (SAC) complex and responsible for regulating cell behavior in G2/M phase. We selected SAC-related proteins TTK and MAD2L1 to test their expressions in clinical tumor samples, and detected their overexpression in lung adenocarcinoma tissues as compared with the adjacent tissues.
CONCLUSIONS
Seven SAC complex-related genes, including TTK and MAD2L1, are overexpressed in lung adenocarcinoma tissues with close correlation with the prognosis of the patients.
Adenocarcinoma of Lung/genetics*
;
Big Data
;
Cell Cycle Proteins/genetics*
;
Computational Biology
;
Gene Expression Profiling
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Lung Neoplasms/genetics*
;
M Phase Cell Cycle Checkpoints
;
Mad2 Proteins/genetics*
;
Protein-Serine-Threonine Kinases/genetics*
;
Protein-Tyrosine Kinases/genetics*
4.Downregulation of MCL-1 by Diallyl Disulfide Induces G/M Arrest in Human Leukemia K562 Cells and Its Mechanism.
Xiao-Xia JI ; Fang LIU ; Hong XIA ; Jie HE ; Hui TAN ; Lan YI ; Qi SU
Journal of Experimental Hematology 2018;26(3):750-755
OBJECTIVETo investigate the inducing effect of down-regulation of MCL-1 by diallyl disulfide(DADS) on the G/M arrest of human leukemia K562 cells and its mechanisms.
METHODSCCK-8 was used to detect the effect of DADS on proliferation of K562 cells, flow cytometry was employed to observe the effect of cycle arrest by DADS and RNAi silencing MCL-1 gene in K562 cells. The expressions of MCL-1, PCNA and CDK1 in K562 cells treated with DADS were detected by Western blot. The amphigamy of MCL-1 with PCNA and CDK1 was detected by Coimmunoprecipitation.
RESULTSCCK-8 detection showed that the inhibition rates of K562 cells treated with 15, 30, 60, 120, 240 µmol/L DADS were 32.48%, 59.34%, 66.42%, 77.06%, 81.05% respectively (P<0.05). Flow cytometry analysis revealed that the perecentages of G/M cells were increased to 18.6% and 34.4%, 17.5% and 28.5%, respectively at 24 and 48 h after treating K562 cells with 60 and 120 µmol/L DADS (P<0.05). And the perecentage of G/M cells of silencing MCL-1 was significantly increased (P<0.05). Silencing effects of MCL-1+DADS on the cells were enhanced more significantly as compared with DADS or MCL-1 alone (P<0.05). Western blot exhibited that DADS could markedly downregulate the expression of MCL-1, PCNA and CDK1(P<0.05). Coimmunoprecipitation revealed that MCL-1 bound with PCNA and CDK1, then forming heterodimers, which were downregulated respectively more significantly than that in the control group after treating K562 cells with DADS for 8 h (P<0.05).
CONCLUSIONDADS can inhibit the K562 cell proliferation and induce them arrest G/M through downregulation of MCL-1, then decreasing the expression of PCNA and CDK1 in hunan leukemia K562 cells. Moreover, silencing MCL-1 can enhance the effect of DADS.
Allyl Compounds ; Apoptosis ; Cell Line, Tumor ; Disulfides ; Down-Regulation ; G2 Phase Cell Cycle Checkpoints ; Humans ; K562 Cells ; Leukemia ; M Phase Cell Cycle Checkpoints ; Myeloid Cell Leukemia Sequence 1 Protein
5.Ophiopogonin D inhibits cell proliferation, causes cell cycle arrest at G2/M, and induces apoptosis in human breast carcinoma MCF-7 cells.
Qing-qing ZANG ; Lu ZHANG ; Ning GAO ; Cheng HUANG
Journal of Integrative Medicine 2016;14(1):51-59
OBJECTIVETo investigate the effects of ophiopogonin D on human breast cancer MCF-7 cells.
METHODSCell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and colony formation experiments. Cell cycle was measured with cell cycle flow cytometry and a living cell assay. Apoptosis and terminal deoxynucleoitidyl transferase-mediated dUTP nick end labeling assays were performed to detect the apoptosis of MCF-7 cells induced by ophiopogonin D. Finally, Western blotting was used to explore the mechanism.
RESULTSExposure of cells to ophiopogonin D resulted in marked decreases in viable cells and colony formation with a dose-dependent manner. Treatment of these cells with ophiopogonin D also resulted in cell cycle arrest at the G(2)/M phase, and increased apoptosis. Mechanistically, ophiopogonin D-induced G(2)/M cell cycle arrest was associated with down-regulation of cyclin B1. Furthermore, activation of caspase-8 and caspase-9 was involved in ophiopogonin D-induced apoptosis.
CONCLUSIONThe data suggested that ophiopogonin D inhibits MCF-7 cell growth via the induction of cell cycle arrest at the G(2)/M phase.
Apoptosis ; drug effects ; Cell Proliferation ; drug effects ; G2 Phase Cell Cycle Checkpoints ; drug effects ; Humans ; M Phase Cell Cycle Checkpoints ; drug effects ; MCF-7 Cells ; Saponins ; pharmacology ; Spirostans ; pharmacology
6.The p90 ribosomal S6 kinase 2 specifically affects mitotic progression by regulating the basal level, distribution and stability of mitotic spindles.
Yun Yeon PARK ; Hyun Ja NAM ; Mihyang DO ; Jae Ho LEE
Experimental & Molecular Medicine 2016;48(8):e250-
RSK2, also known as RPS6KA3 (ribosomal protein S6 kinase, 90 kDa, polypeptide 3), is a downstream kinase of the mitogen-activated protein kinase (MAPK) pathway, which is important in regulating survival, transcription, growth and proliferation. However, its biological role in mitotic progression is not well understood. In this study, we examined the potential involvement of RSK2 in the regulation of mitotic progression. Interestingly, depletion of RSK2, but not RSK1, caused the accumulation of mitotic cells. Time-lapse analysis revealed that mitotic duration, particularly the duration for metaphase-to-anaphase transition was prolonged in RSK2-depleted cells, suggesting activation of spindle assembly checkpoint (SAC). Indeed, more BubR1 (Bub1-related kinase) was present on metaphase plate kinetochores in RSK2-depleted cells, and depletion of BubR1 abolished the mitotic accumulation caused by RSK2 depletion, confirming BubR1-dependent SAC activation. Along with the shortening of inter-kinetochore distance, these data suggested that weakening of the tension across sister kinetochores by RSK2 depletion led to the activation of SAC. To test this, we analyzed the RSK2 effects on the stability of kinetochore–microtubule interactions, and found that RSK2-depleted cells formed less kinetochore–microtubule fibers. Moreover, RSK2 depletion resulted in the decrease of basal level of microtubule as well as an irregular distribution of mitotic spindles, which might lead to observed several mitotic progression defects such as increase in unaligned chromosomes, defects in chromosome congression and a decrease in pole-to-pole distance in these cells. Taken together, our data reveal that RSK2 affects mitotic progression by regulating the distribution, basal level and the stability of mitotic spindles.
Humans
;
Kinetochores
;
M Phase Cell Cycle Checkpoints
;
Metaphase
;
Microtubules
;
Phosphotransferases
;
Protein Kinases
;
Ribosomal Protein S6 Kinases
;
Ribosomal Protein S6 Kinases, 90-kDa*
;
Siblings
;
Spindle Apparatus*
7.Oleanolic acid induces G₂/M phase arrest and apoptosis in human hepatocellular carcinoma Bel-7402 cells.
Ling LIU ; Jian-long ZHAO ; Jian-gang WANG
China Journal of Chinese Materia Medica 2015;40(24):4897-4902
This study was to examine the mechanism of oleanolic acid (OA) induces G2/M phase arrest and apoptosis in human hepatocellular carcinoma Bel-7402 cells. MTT and trypan blue exclusion test assay were adopted to detect the proliferate status of cells treated with OA. We assayed the cell cycle by flow cytometry using PI staining. Apoptosis was determined by Annexin V-FITC staining and PI labeling. The expressions of cycle related proteins and apoptotic related proteins were determined by Western blot analysis. OA strongly inhibited human hepatoma cells proliferation. When Bel-7402 cells were pretreated with OA for 24 h, OA induced apoptosis and G₂/M phase cell cycle arrest in a concentration-dependent manner. Analysis of the cell cycle regulatory proteins demonstrated that OA decreased the protein levels of cyclin B1, but increased the protein levels of p-Cdk1 (Tyr15) and p-Cdc25C (Ser 216). Moreover, OA modulated the phosphorylation of protein kinases Chk1 and p2l. Western blotting assay also showed significant decrease of Bcl-2 protein expression and increase of Bax protein expression, the cytosol Cyt c level, cleaved-caspase-9 and cleaved-caspase-3 activity. These data suggest that OA produces anti-tumor effect via induction of G₂/M cell cycle arrest and apoptosis.
Apoptosis
;
drug effects
;
Carcinoma, Hepatocellular
;
drug therapy
;
pathology
;
Cell Line, Tumor
;
G2 Phase Cell Cycle Checkpoints
;
drug effects
;
Humans
;
Liver Neoplasms
;
drug therapy
;
pathology
;
M Phase Cell Cycle Checkpoints
;
drug effects
;
Oleanolic Acid
;
pharmacology
8.Partial Hepatectomy in Acetylation-Deficient BubR1 Mice Corroborates that Chromosome Missegregation Initiates Tumorigenesis.
Yoo Kyung LEE ; Inai PARK ; Hyunsook LEE
Endocrinology and Metabolism 2014;29(4):561-566
BACKGROUND: Aneuploidy has been suggested as one of the major causes of cancer from the time of Boveri. In support of this notion, many studies have shown that cancer cells exhibit aneuploidy. However, there are evidences that do not support the aneuploidy hypothesis. We have previously reported that the spindle assembly checkpoint protein BubR1 is acetylated in mitosis and that the acetylation of BubR1 is crucial for checkpoint maintenance and chromosome-spindle attachment. Mice heterozygous for acetylation-deficient BubR1 (K243R/+) spontaneously develop cancer with chromosome instability. As K243R/+ mice develop hepatocellular carcinoma, we set out to test if chromosome mis-segregation was the cause of their liver cancer. METHODS: Primary hepatocytes in the regenerating liver after partial hepatectomy (PH) were analyzed and compared for various mitotic parameters. RESULTS: Primary hepatocytes isolated from K243R/+ mice after PH displayed a marked increase of chromosome misalignment, accompanied by an increase of micronuclei. In comparison, the number of nuclei per cell and the centrosome numbers were not different between wild-type and K243R/+ mice. Taken together, chromosome mis-segregation provokes tumorigenesis in mouse liver. CONCLUSION: Our results corroborate that PH provides a reliable tool for assessing mitotic infidelity and cancer in mice.
Acetylation
;
Aneuploidy
;
Animals
;
Carcinogenesis*
;
Carcinoma, Hepatocellular
;
Centrosome
;
Chromosomal Instability
;
Hepatectomy*
;
Hepatocytes
;
Hydrogen-Ion Concentration
;
Liver
;
Liver Neoplasms
;
M Phase Cell Cycle Checkpoints
;
Mice*
;
Mitosis
9.The ethanol extract isolated from Weiqi Decoction induces G₂/M arrest and apoptosis in AGS cells.
Hai-lian SHI ; Bao TAN ; Guang JI ; Lan LU ; Jian-qun XIE
Chinese journal of integrative medicine 2014;20(6):430-437
OBJECTIVETo evaluate the effects of the ethanol extract isolated from Weiqi Decoction (WQD-EE) on AGS cell proliferation and apoptosis.
METHODSBy using high-performance liquid chromatography with ultraviolet detectors (HPLC-UV) assay and MTT method, the main compounds in WQD-EE and cell viability were detected. And cell cycle distributions were determined by flow cytometry with propidium iodine (PI) staining while apoptosis was detected by flow cytometry with annexin V/PI double staining. Finally, caspase-3 activities were measured by colorimetric method and protein expression was determined by Western blotting.
RESULTSHPLC analysis showed that naringin (35.92 μg/mg), nobiletin (21.98 μg/mg), neohesperidin (17.98 μg/mg) and tangeretin (0.756 μg/mg) may be the main compounds in WQD-EE. WQD-EE not only inhibited AGS and MCF 7 cell proliferation in a dose-dependent manner, but also blocked cell cycle progression at G2/M stage as well as inducing cell apoptosis at concentrations triggering significant inhibition of proliferation and cell cycle arrest in AGS cells. While at 0.5 mg/mL, WQD-EE significantly increased caspase-3 activity by 2.75 and 7.47 times at 24 h and 48 h, respectively. Moreover, WQD-EE in one hand reduced protein expressions of p53 and cyclin B1, and in other hand enhanced protein expressions of cytochrome c and Bax. Protein levels of Bcl-2, Fas L and Fas were not significantly affected by WQD-EE.
CONCLUSIONSWQD-EE inhibits AGS cell proliferation through G2/M arrest due to down-regulation of cyclin B1 protein expression, and promotes apoptosis by caspase-3 and mitochondria-dependent pathways, but not by p53-dependent pathway.
Apoptosis ; drug effects ; Caspase 3 ; metabolism ; Cell Cycle ; drug effects ; Cell Line, Tumor ; Cell Proliferation ; drug effects ; Cell Survival ; drug effects ; Chromatography, High Pressure Liquid ; Drugs, Chinese Herbal ; pharmacology ; Ethanol ; chemistry ; G2 Phase Cell Cycle Checkpoints ; drug effects ; Humans ; M Phase Cell Cycle Checkpoints ; drug effects ; Neoplasm Proteins ; metabolism ; Plant Extracts ; isolation & purification
10.Knockdown of Bcl-xL Enhances Growth-Inhibiting and Apoptosis-Inducing Effects of Resveratrol and Clofarabine in Malignant Mesothelioma H-2452 Cells.
Yoon Jin LEE ; In Sung HWANG ; Yong Jin LEE ; Chang Ho LEE ; Sung Ho KIM ; Hae Saeon NAM ; Young Jin CHOI ; Sang Han LEE
Journal of Korean Medical Science 2014;29(11):1464-1472
Mcl-1 and Bcl-xL, key anti-apoptotic proteins of the Bcl-2 family, have attracted attention as important molecules in the cell survival and drug resistance. In this study, we investigated whether inhibition of Bcl-xL influences cell growth and apoptosis against simultaneous treatment of resveratrol and clofarabine in the human malignant mesothelioma H-2452 cells. Resveratrol and clofarabine decreased Mcl-1 protein levels but had little effect on Bcl-xL levels. In the presence of two compounds, any detectable change in the Mcl-1 mRNA levels was not observed in RT-PCR analysis, whereas pretreatment with the proteasome inhibitor MG132 led to its accumulation to levels far above basal levels. The knockdown of Bcl-xL inhibited cell proliferation with cell accumulation at G2/M phase and the appearance of sub-G0/G1 peak in DNA flow cytometric assay. The suppression of cell growth was accompanied by an increase in the caspase-3/7 activity with the resultant cleavages of procaspase-3 and its substrate poly (ADP-ribose) polymerase, and increased percentage of apoptotic propensities in annexin V binding assay. Collectively, our data represent that the efficacy of resveratrol and clofarabine for apoptosis induction was substantially enhanced by Bcl-xL-lowering strategy in which the simultaneous targeting of Mcl-1 and Bcl-xL could be a more effective strategy for treating malignant mesothelioma.
Adenine Nucleotides/*pharmacology
;
Antimetabolites, Antineoplastic/*pharmacology
;
Apoptosis/*drug effects
;
Arabinonucleosides/*pharmacology
;
Caspase 3/metabolism
;
Caspase 7/metabolism
;
Cell Line, Tumor
;
Cell Proliferation/drug effects
;
G2 Phase Cell Cycle Checkpoints/drug effects
;
Gene Knockdown Techniques
;
Humans
;
Leupeptins/pharmacology
;
Lung Neoplasms/metabolism/pathology
;
M Phase Cell Cycle Checkpoints/drug effects
;
Mesothelioma/metabolism/pathology
;
Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors/genetics/metabolism
;
RNA Interference
;
RNA, Messenger/metabolism
;
RNA, Small Interfering/metabolism
;
Stilbenes/*pharmacology
;
bcl-X Protein/antagonists & inhibitors/*genetics/*metabolism

Result Analysis
Print
Save
E-mail