1.miR-207 targets autophagy-associated protein LAMP2 to regulate the mechanism of macrophage-mycobacterium tuberculosis interaction.
Wenya DU ; Yumei DAI ; Linzhi YUE ; Tao MA ; Lixian WU
Chinese Journal of Cellular and Molecular Immunology 2025;41(2):97-104
Objectives miR-207 has been identified as being expressed in natural killer (NK) cell exosomes that play a role in disease progression; however, to date, there are no studies specifically linking miR-207 to tuberculosis (TB). Methods Bioinformatics methods employed for prediction, followed by a dual luciferase reporter assay to determine whether lysosome-associated membrane protein 2 (LAMP2) is targeted by miR-207. The experiments were divided into four groups using the liposome transfection method (OP-LAMP2 group: co-transfected with miR-207 mimics and LAMP2 overexpression plasmid; EP group: co-transfected with mimics NC and null-loaded plasmid; siLAMP2 group: transfected with siLAMP2; and siLAMP2-NC group: transfected with siLAMP2-NC). TB infection was modeled using H37Ra-infected Ana-1 cells. The impact of LAMP2 on intracellular mycobacterial load and clearance of extracellular residual mycobacteria were assessed by tuberculosis colony-forming unit counting. Flow cytometry was used to assess the total apoptosis rate. Real-time fluorescent quantitative PCR was conducted to determine the relative expression of LAMP2, apoptosis genes, pyroptosis genes, and autophagy genes. Western blot analysis was performed to measure the relative expression of LAMP2 proteins, apoptosis proteins, pyroptosis proteins, and autophagy proteins. Results Dual luciferase reporter assay test showed that there was a targeting relationship between LAMP2 and miR-207. The transfection model was successfully constructed under real-time fluorescent quantitative PCR and Western blot statistical analysis, and microscopic observation. The infection model was successfully established under microscopic observation. Colony forming unit counting revealed that the number of colonies in the OP-LAMP2 group was lower than that in the EP group, while the number of colonies in the siLAMP2 group was higher than that in the siLAMP2-NC group. Flow cytometry assay revealed that the total apoptosis in OP-LAMP2 group was lower than that in EP group, and the total apoptosis in siLAMP2 group was higher than that in siLAMP2-NC group. Real-time fluorescence quantitative PCR and Western blot analysis revealed that the relative expression of apoptosis and pyroptosis-related proteins and genes in the control group was lower in the OP-LAMP2 group compared to the EP group, and higher in the siLAMP2 group compared to the siLAMP2-NC group. Real-time fluorescence quantitative PCR detected that the relative expression of autophagy positively regulated genes Microtubule-associated protein 1 light chain 3(LC3)and Beclin1 in the OP-LAMP2 group was higher in the OP-LAMP2 group compared to the EP group, and lower in the siLAMP2 group compared to the siLAMP2-NC group, while the relative expression of negatively regulated autophagy genes followed the opposite trend to that of autophagy positively regulated genes. The relative expression of autophagy-related proteins was consistent with the trend of autophagy genes. Conclusions miR-207 enhances macrophage apoptosis, cellular pyroptosis and inhibits autophagy, promoting survival of Mycobacterium tuberculosis by targeting the autophagy-related protein LAMP2, thus offering a novel therapeutic direction for tuberculosis.
Lysosomal-Associated Membrane Protein 2/metabolism*
;
MicroRNAs/metabolism*
;
Mycobacterium tuberculosis/physiology*
;
Autophagy/genetics*
;
Humans
;
Macrophages/metabolism*
;
Apoptosis/genetics*
;
Tuberculosis/metabolism*
;
Cell Line
;
Pyroptosis/genetics*
2.Exploring effects and mechanisms of Agrimoniae Herba-Coptidis Rhizoma containing serum on colorectal cancer cells via LAMP2A-mediated autophagy.
Ya-Ping HE ; Min-Yan HOU ; Xin-Ling SHEN ; Zhi-Yu LI ; Min XU ; Xuan CHEN ; Shu-Juan ZHANG ; Han XIONG ; Hai-Yan PENG
China Journal of Chinese Materia Medica 2024;49(21):5730-5742
This study investigated the effects of Agrimoniae Herba-Coptidis Rhizoma(XHC-HL)-medicated serum on the proliferation, migration, invasion, and apoptosis of human colorectal cancer HT29 and HCT116 cells via the autophagy mediated by lysosome-associated membrane protein type 2A(LAMP2A). Bioinformatics analysis was conducted to explore the role of LAMP2A in the development and progression of colorectal cancer. Western blot(WB) was used to detect the expression of LAMP2A protein in colorectal cancer cell lines. Lentiviral transfection was utilized to construct LAMP2A knockdown in HT29 and overexpression in HCT116 colorectal cancer cell models. Real-time fluorescence quantitative polymerase chain reaction(real-time qPCR) was performed to assess transfection efficiency. HT29 and HCT116 cells were treated with different concentrations of XHC-HL-medicated serum. The cell counting kit-8(CCK-8) assay was used to detect cell proliferation and determine the optimal concentration and duration of medicated serum intervention. HT29 cells were divided into a normal control(NC) group, an XHC-HL(medicated serum treatment) group, and an XHC-HL+shLAMP2A(medicated serum treatment+LAMP2A knockdown) group. HCT116 cells were divided into a NC group, an XHC-HL group, and an XHC-HL+LAMP2A(medicated serum treatment+LAMP2A overexpression) group. CCK-8 was used to measure cell viability. Colony formation assay was employed to assess cell proliferation ability. Scratch and Transwell migration assays were conducted to evaluate cell migration ability, and Transwell invasion assay was used to detect cell invasion ability. Flow cytometry was adopted to determine apoptosis rates. WB and real-time qPCR were employed to detect the effect of XHC-HL on the protein and mRNA expression of LAMP2A, heat shock cognate protein 70(HSC70), heat shock protein 90(HSP90), and glyceraldehyde-3-phosphate dehydrogenase(GAPDH) in colorectal cancer cells. Differential expression analysis revealed that LAMP2A expression was significantly higher in colorectal cancer patients compared to that in normal controls. Survival analysis indicated that the key molecule of chaperone-mediated autophagy(CMA), LAMP2A, was closely associated with colorectal cancer progression. Gene set enrichment analysis showed that patients with high LAMP2A expression significantly upregulated tumor progression-related signaling pathways such as angiogenesis and immune suppression. Immune infiltration analysis found that patients with high LAMP2A expression had fewer CD8 T cell infiltrations in their tumor microenvironment. XHC-HL-medicated serum inhibited the viability of HT29 and HCT116 cells, with the optimal intervention concentration and duration being 20% and 48 hours, respectively. Compared to the NC group, XHC-HL inhibited the proliferation, migration, and invasion of HT29 and HCT116 cells, and induced apoptosis. The medicated serum treatment with LAMP2A knockdown further inhibited colorectal cancer cell proliferation, invasion, and migration, and promoted apoptosis, whereas overexpression of LAMP2A reversed the inhibitory effects of the medicated serum on proliferation, migration, and invasion, and reduced apoptosis rates. XHC-HL-medicated serum inhibited CMA by upregulating the protein and mRNA expression of LAMP2A, HSC70, and HSP90 and downregulating substrate protein GAPDH expression via the autophagy mediated by LAMP2A. In conclusion, XHC-HL-medicated serum inhibits the proliferation, migration, and invasion of colorectal cancer cells and induces apoptosis by downregulating the expression of the key CMA molecule LAMP2A and inhibiting CMA activity.
Humans
;
Colorectal Neoplasms/pathology*
;
Drugs, Chinese Herbal/pharmacology*
;
Lysosomal-Associated Membrane Protein 2/metabolism*
;
Cell Proliferation/drug effects*
;
Autophagy/drug effects*
;
HCT116 Cells
;
Cell Movement/drug effects*
;
Apoptosis/drug effects*
;
HT29 Cells
;
Serum/chemistry*
;
Coptis chinensis
3.Lysosomal membrane protein Sidt2 knockout induces apoptosis of human hepatocytes in vitro independent of the autophagy-lysosomal pathway.
Jiating XU ; Mengya GENG ; Haijun LIU ; Wenjun PEI ; Jing GU ; Mengxiang QI ; Yao ZHANG ; Kun LÜ ; Yingying SONG ; Miaomiao LIU ; Xin HU ; Cui YU ; Chunling HE ; Lizhuo WANG ; Jialin GAO
Journal of Southern Medical University 2023;43(4):637-643
OBJECTIVE:
To explore the regulatory mechanism of human hepatocyte apoptosis induced by lysosomal membrane protein Sidt2 knockout.
METHODS:
The Sidt2 knockout (Sidt2-/-) cell model was constructed in human hepatocyte HL7702 cells using Crispr-Cas9 technology.The protein levels of Sidt2 and key autophagy proteins LC3-II/I and P62 in the cell model were detected using Western blotting, and the formation of autophagosomes was observed with MDC staining.EdU incorporation assay and flow cytometry were performed to observe the effect of Sidt2 knockout on cell proliferation and apoptosis.The effect of chloroquine at the saturating concentration on autophagic flux, proliferation and apoptosis of Sidt2 knockout cells were observed.
RESULTS:
Sidt2-/- HL7702 cells were successfully constructed.Sidt2 knockout significantly inhibited the proliferation and increased apoptosis of the cells, causing also increased protein expressions of LC3-II/I and P62(P < 0.05) and increased number of autophagosomes.Autophagy of the cells reached a saturated state following treatment with 50 μmol/L chloroquine, and at this concentration, chloroquine significantly increased the expressions of LC3B and P62 in Sidt2-/- HL7702 cells.
CONCLUSION
Sidt2 gene knockout causes dysregulation of the autophagy pathway and induces apoptosis of HL7702 cells, and the latter effect is not mediated by inhibiting the autophagy-lysosomal pathway.
Humans
;
Lysosome-Associated Membrane Glycoproteins/metabolism*
;
Autophagy
;
Apoptosis
;
Hepatocytes
;
Lysosomes/metabolism*
;
Chloroquine/pharmacology*
;
Nucleotide Transport Proteins/metabolism*
4.Clinical characteristics of Danon disease.
Wu Wan WANG ; Yuan Yuan ZHU ; Wei WU ; Da Chun ZHAO ; Xue LIN ; Li Gang FANG ; Shu Yang ZHANG
Chinese Journal of Cardiology 2023;51(1):51-57
Objective: To review the clinical data of 7 patients with Danon disease and analyze their clinical characteristics. Methods: The medical records of 7 patients with Danon disease, who were hospitalized in Peking Union Medical College Hospital of Chinese Academy of Medical Sciences from April 2008 to July 2021, were reviewed and summarized, of which 6 cases were diagnosed as Danon disease by lysosomal-associated membrane protein-2 (LAMP-2) gene mutation detection and 1 case was diagnosed by clinicopathological features. Clinical manifestations, biochemical indexes, electrocardiogram, echocardiography, skeletal muscle and myocardial biopsy and gene detection results were analyzed, and patients received clinical follow-up after discharge. Results: Six patients were male and average age was (15.4±3.5) years and the average follow-up time was (27.7±17.0) months. The main clinical manifestations were myocardial hypertrophy (6/7), decreased myodynamia (2/7) and poor academic performance (3/7). Electrocardiogram features included pre-excitation syndrome (6/7) and left ventricular hypertrophy (7/7). Echocardiography examination evidenced myocardial hypertrophy (6/7), and left ventricular dilatation and systolic dysfunction during the disease course (1/7). The results of skeletal muscle biopsy in 6 patients were consistent with autophagy vacuolar myopathy. Subendocardial myocardial biopsy was performed in 3 patients, and a large amount of glycogen deposition with autophagosome formation was found in cardiomyocytes. LAMP-2 gene was detected in 6 patients, and missense mutations were found in all these patients. During the follow-up period, implantable cardioverter defibrillator implantation was performed in 1 patient because of high atrioventricular block 4 years after diagnosis, and there was no death or hospitalization for cardiovascular events in the other patients. Conclusion: The main clinical manifestations of Danon disease are cardiomyopathy, myopathy and mental retardation. Pre-excitation syndrome is a common electrocardiographic manifestation. Autophagy vacuoles can be seen in skeletal muscle and myocardial pathological biopsies. LAMP-2 gene mutation analysis is helpful in the diagnose of this disease.
Adolescent
;
Child
;
Female
;
Humans
;
Male
;
Cardiomyopathies/etiology*
;
Glycogen Storage Disease Type IIb/complications*
;
Hypertrophy, Left Ventricular/etiology*
;
Lysosomal-Associated Membrane Protein 2/genetics*
;
Pre-Excitation Syndromes/genetics*
5.LIMP-2 enhances cancer stem-like cell properties by promoting autophagy-induced GSK3β degradation in head and neck squamous cell carcinoma.
Yuantong LIU ; Shujin LI ; Shuo WANG ; Qichao YANG ; Zhizhong WU ; Mengjie ZHANG ; Lei CHEN ; Zhijun SUN
International Journal of Oral Science 2023;15(1):24-24
Cancer stem cell-like cells (CSCs) play an integral role in the heterogeneity, metastasis, and treatment resistance of head and neck squamous cell carcinoma (HNSCC) due to their high tumor initiation capacity and plasticity. Here, we identified a candidate gene named LIMP-2 as a novel therapeutic target regulating HNSCC progression and CSC properties. The high expression of LIMP-2 in HNSCC patients suggested a poor prognosis and potential immunotherapy resistance. Functionally, LIMP-2 can facilitate autolysosome formation to promote autophagic flux. LIMP-2 knockdown inhibits autophagic flux and reduces the tumorigenic ability of HNSCC. Further mechanistic studies suggest that enhanced autophagy helps HNSCC maintain stemness and promotes degradation of GSK3β, which in turn facilitates nuclear translocation of β-catenin and transcription of downstream target genes. In conclusion, this study reveals LIMP-2 as a novel prospective therapeutic target for HNSCC and provides evidence for a link between autophagy, CSC, and immunotherapy resistance.
Humans
;
Autophagy
;
Carcinoma, Squamous Cell/pathology*
;
Cell Line, Tumor
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Head and Neck Neoplasms/pathology*
;
Neoplastic Stem Cells/pathology*
;
Squamous Cell Carcinoma of Head and Neck/pathology*
;
Lysosome-Associated Membrane Glycoproteins
6.Expression of Lysosomal Membrane Proteins LAMP1, TPC1 and TPC2 in Acute Myeloid Leukemia Cells and Its Clinical Significance.
Xiang WANG ; Bing-Qian LING ; Mei-Fang DAI ; Xing-Bing WANG
Journal of Experimental Hematology 2019;27(4):1046-1052
OBJECTIVE:
To investigate the relationship between the expression of lysosomal membrane proteins LAMP1, TPC1 and TPC2 in acute myeloid leukemia (AML) cells and clinical indications of AML and to explore the possible role in the genesis and development of AML and clinical significance.
METHODS:
Real-time quantitative PCR was used to detect the mRNA expression of LAMP1, TPC1 and TPC2 in AML cell lines (HL-60, NB4) and 57 patients with acute myeloid leukemia (including 44 initially treated patients and 13 relapsed and refractory patients). The relationship of mRNA expression levels with clinical indicators and post-chemotherapy remission was analyzed.
RESULTS:
Compared with CD34 hematopoietic stem cells (HSC), the expression levels of LAMP1 and TPC1 in AML cell lines HL-60 and NB4 significantly increased, while the expression level of TPC2 was not significantly different. The expression levels of LAMP1, TPC1 and TPC2 in bone marrow mononuclear cells (BMMNC) of AML patients were higher than those in normal human BMMNC (P<0.05), and the expression levels of LAMP1, TPC1 and TPC2 in CD34 primary AML cells(CD34 primary cells in the patient's bone marrow >90%) were also high. There was no significant difference in the expression of LAMP1, TPC1 and TPC2 between CD34HSC of patients with AML and relapsed/refractory patients (P>0.05). No correlation was found between age, sex and genotype and expression of membrane proteins (P>0.05). The expression levels of LAMP1 and TPC1 positively correlated with the number of white blood cells in peripheral blood of patients (P<0.01). LAMP1 and TPC2 were found to be associated with remission after a course of chemotherapy in newly diagnosed patients. Initially treated patients with high expression of LAMP1 in the bone marrow not easily relieved after one course of chemotherapy. Patients with high expression of TPC2 in the bone marrow more likely to be relieved after one course of chemotherapy.
CONCLUSION
The mRNA of the three membrane proteins are highly expressed in AML patients, and LAMP1 and TPC1 are risk factors for AML disease progression. High expression of TPC2 is beneficial for chemotherapy of patients with newly diagnosed AML.
Bone Marrow
;
Bone Marrow Cells
;
Hematopoietic Stem Cells
;
Humans
;
Leukemia, Myeloid, Acute
;
Lysosome-Associated Membrane Glycoproteins
7.Targeted binding of estradiol with ESR1 promotes proliferation of human chondrocytes by inhibiting activation of ERK signaling pathway.
Min LIU ; Weiwei XIE ; Wei ZHENG ; Danyang YIN ; Rui LUO ; Fengjin GUO
Journal of Southern Medical University 2019;39(2):134-143
OBJECTIVE:
To investigate the effect of estradiol (E2)/estrogen receptor 1 (ESR1) on the proliferation of human chondrocytes and explore the molecular mechanism.
METHODS:
The Ad-Easy adenovirus packaging system was used to construct and package the ESR1-overexpressing adenovirus Ad-ESR1. Western blotting and qPCR were used to detect the expression of ESR1 protein and mRNA in human chondrocyte C28I2 cells. In the cells treated with different adenoviruses, the effects of E2 were tested on the expressions of proteins related with cell autophagy and apoptosis and the phosphorylation of ERK signaling pathway using Western blotting. Immunofluorescence assay was used to observe the intracellular autophagic flow, flow cytometry was performed to analyze the cell apoptosis rate and the cell cycle changes, and qPCR was used to detect the expressions of PCNA, cyclin B1 and cyclin D1 mRNAs. The inhibitory effect of the specific inhibitor of ERK on the expressions of autophagy- and apoptosis-related genes at both the protein and mRNA levels were detected using Western blotting and qPCR.
RESULTS:
Transfection with the recombinant adenovirus overexpressing ESR1 and E2 treatment of C28I2 cells significantly enhanced the expressions of autophagy-related proteins LC3, ATG7, promoted the colocalization of LC3 and LAMP1 in the cytoplasm, increased the expressions of the proliferation-related marker genes PCNA, cyclin B1 and cyclin D1, and supressed the expressions of cleaved caspase-3, caspase-12 and pERK. RNA interference of ESR1 obviously lowered the expression levels of autophagy-related proteins in C28I2 cells, causing also suppression of the autophagic flow, increments of the expressions of apoptosis-related proteins and pERK, and down-regulated the expressions of the proliferation marker genes. Blocking ERK activation with the ERK inhibitor obviously inhibited the effects of E2/ESR1 on autophagy, proliferationrelated gene expressions and cell apoptosis.
CONCLUSIONS
The targeted binding of E2 with ESR1 promotes the proliferation of human chondrocytes possibly by inhibiting the activation of ERK signaling pathway to promote cell autophagy and induce cell apoptosis.
Adenoviridae
;
metabolism
;
Apoptosis
;
Autophagy
;
Autophagy-Related Protein 7
;
metabolism
;
Cell Line
;
Cell Proliferation
;
Chondrocytes
;
cytology
;
metabolism
;
Estradiol
;
metabolism
;
Estrogen Receptor alpha
;
metabolism
;
Humans
;
Lysosome-Associated Membrane Glycoproteins
;
metabolism
;
MAP Kinase Signaling System
;
Microtubule-Associated Proteins
;
metabolism
;
Transfection
8.Relationships between Rapid Eye Movement Sleep Behavior Disorder and Neurodegenerative Diseases: Clinical Assessments, Biomarkers, and Treatment.
Min LI ; Li WANG ; Jiang-Hong LIU ; Shu-Qin ZHAN
Chinese Medical Journal 2018;131(8):966-973
ObjectiveRapid eye movement sleep behavior disorder (RBD) is characterized by dream enactment and loss of muscle atonia during rapid eye movement sleep. RBD is closely related to α-synucleinopathies including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Many studies have investigated the markers of imaging and neurophysiological, genetic, cognitive, autonomic function of RBD and their predictive value for neurodegenerative diseases. This report reviewed the progress of these studies and discussed their limitations and future research directions.
Data SourcesUsing the combined keywords: "RBD", "neurodegenerative disease", "Parkinson disease", and "magnetic resonance imaging", the PubMed/MEDLINE literature search was conducted up to January 1, 2018.
Study SelectionA total of 150 published articles were initially identified citations. Of the 150 articles, 92 articles were selected after further detailed review. This study referred to all the important English literature in full.
ResultsSingle-nucleotide polymorphisms in SCARB2 (rs6812193) and MAPT (rs12185268) were significantly associated with RBD. The olfactory loss, autonomic dysfunction, marked electroencephalogram slowing during both wakefulness and rapid eye movement sleep, and cognitive impairments were potential predictive markers for RBD conversion to neurodegenerative diseases. Traditional structural imaging studies reported relatively inconsistent results, whereas reduced functional connectivity between the left putamen and substantia nigra and dopamine transporter uptake demonstrated by functional imaging techniques were relatively consistent findings.
ConclusionsMore longitudinal studies should be conducted to evaluate the predictive value of biomarkers of RBD. Moreover, because the glucose and dopamine metabolisms are not specific for assessing cognitive cognition, the molecular metabolism directly related to cognition should be investigated. There is a need for more treatment trials to determine the effectiveness of interventions of RBD on preventing the conversion to neurodegenerative diseases.
Biomarkers ; blood ; Humans ; Lysosome-Associated Membrane Glycoproteins ; genetics ; Neurodegenerative Diseases ; blood ; genetics ; physiopathology ; Parkinson Disease ; blood ; genetics ; physiopathology ; Polymorphism, Single Nucleotide ; genetics ; REM Sleep Behavior Disorder ; blood ; genetics ; physiopathology ; Receptors, Scavenger ; genetics ; tau Proteins ; genetics
9.Identification of LAMP2 mutations in early-onset hypertrophic cardiomyopathy by targeted exome sequencing.
Inkyu GILL ; Ja Hye KIM ; Jin Hwa MOON ; Yong Joo KIM ; Nam Su KIM
Journal of Genetic Medicine 2018;15(2):87-91
X-linked dominant mutations in lysosome-associated membrane protein 2 (LAMP2) gene have been shown to be the cause of Danon disease, which is a rare disease associated with clinical triad of cardiomyopathy, skeletal myopathy, and mental retardation. Cardiac involvement is a common manifestation and is the leading cause of death in Danon disease. We report a case of a 24-month-old boy with hemizygous LAMP2 mutation who presented with failure to thrive and early-onset hypertrophic cardiomyopathy. We applied targeted exome sequencing and found a novel hemizygous c.692del variant in exon 5 of the LAMP2 gene, resulting a frameshift mutation p.Thr231Ilefs*11. Our study indicates that target next-generation sequencing can be used as a fast and highly sensitive screening method for inherited cardiomyopathy.
Cardiomyopathies
;
Cardiomyopathy, Hypertrophic*
;
Cause of Death
;
Child, Preschool
;
Exome*
;
Exons
;
Failure to Thrive
;
Frameshift Mutation
;
Glycogen Storage Disease Type IIb
;
Humans
;
Intellectual Disability
;
Lysosomal-Associated Membrane Protein 2
;
Male
;
Mass Screening
;
Membrane Proteins
;
Methods
;
Muscular Diseases
;
Rare Diseases
10.The binding of a monoclonal antibody to the apical region of SCARB2 blocks EV71 infection.
Xuyuan ZHANG ; Pan YANG ; Nan WANG ; Jialong ZHANG ; Jingyun LI ; Hao GUO ; Xiangyun YIN ; Zihe RAO ; Xiangxi WANG ; Liguo ZHANG
Protein & Cell 2017;8(8):590-600
Entero virus 71 (EV71) causes hand, foot, and mouth disease (HFMD) and occasionally leads to severe neurological complications and even death. Scavenger receptor class B member 2 (SCARB2) is a functional receptor for EV71, that mediates viral attachment, internalization, and uncoating. However, the exact binding site of EV71 on SCARB2 is unknown. In this study, we generated a monoclonal antibody (mAb) that binds to human but not mouse SCARB2. It is named JL2, and it can effectively inhibit EV71 infection of target cells. Using a set of chimeras of human and mouse SCARB2, we identified that the region containing residues 77-113 of human SCARB2 contributes significantly to JL2 binding. The structure of the SCARB2-JL2 complex revealed that JL2 binds to the apical region of SCARB2 involving α-helices 2, 5, and 14. Our results provide new insights into the potential binding sites for EV71 on SCARB2 and the molecular mechanism of EV71 entry.
Amino Acid Sequence
;
Animals
;
Antibodies, Monoclonal
;
chemistry
;
genetics
;
metabolism
;
Binding Sites
;
Cell Line
;
Crystallography, X-Ray
;
Enterovirus A, Human
;
drug effects
;
genetics
;
growth & development
;
immunology
;
Fibroblasts
;
drug effects
;
virology
;
Gene Expression
;
HEK293 Cells
;
Humans
;
Immunoglobulin Fab Fragments
;
chemistry
;
genetics
;
metabolism
;
Lysosome-Associated Membrane Glycoproteins
;
chemistry
;
genetics
;
immunology
;
Mice
;
Models, Molecular
;
Protein Binding
;
Protein Conformation, alpha-Helical
;
Protein Conformation, beta-Strand
;
Protein Interaction Domains and Motifs
;
Receptors, Scavenger
;
chemistry
;
genetics
;
immunology
;
Receptors, Virus
;
chemistry
;
genetics
;
immunology
;
Recombinant Fusion Proteins
;
chemistry
;
genetics
;
immunology
;
Sequence Alignment
;
Sequence Homology, Amino Acid
;
Sf9 Cells
;
Spodoptera
;
Thermodynamics

Result Analysis
Print
Save
E-mail