1.Hypoxia Induces Epithelial-Mesenchymal Transition in Follicular Thyroid Cancer: Involvement of Regulation of Twist by Hypoxia Inducible Factor-1alpha.
Yeon Ju YANG ; Hwi Jung NA ; Michelle J SUH ; Myung Jin BAN ; Hyung Kwon BYEON ; Won Shik KIM ; Jae Wook KIM ; Eun Chang CHOI ; Hyeong Ju KWON ; Jae Won CHANG ; Yoon Woo KOH
Yonsei Medical Journal 2015;56(6):1503-1514
PURPOSE: Although follicular thyroid cancer (FTC) has a relatively fair prognosis, distant metastasis sometimes results in poor prognosis and survival. There is little understanding of the mechanisms contributing to the aggressiveness potential of thyroid cancer. We showed that hypoxia inducible factor-1alpha (HIF-1alpha) induced aggressiveness in FTC cells and identified the underlying mechanism of the HIF-1alpha-induced invasive characteristics. MATERIALS AND METHODS: Cells were cultured under controlled hypoxic environments (1% O2) or normoxic conditions. The effect of hypoxia on HIF-1alpha, and epithelial-to-mesenchymal transition (EMT) related markers were evaluated by quantitative real-time PCR, Western blot analysis and immunocytochemistry. Invasion and wound healing assay were conducted to identify functional character of EMT. The involvement of HIF-1alpha and Twist in EMT were studied using gene overexpression or silencing. After orthotopic nude mouse model was established using the cells transfected with lentiviral shHIF-1alpha, tissue analysis was done. RESULTS: Hypoxia induces HIF-1alpha expression and EMT, including typical morphologic changes, cadherin shift, and increased vimentin expression. We showed that overexpression of HIF-1alpha via transfection resulted in the aforementioned changes without hypoxia, and repression of HIF-1alpha with RNA interference suppressed hypoxia-induced HIF-1alpha and EMT. Furthermore, we also observed that Twist expression was regulated by HIF-1alpha. These were confirmed in the orthotopic FTC model. CONCLUSION: Hypoxia induced HIF-1alpha, which in turn induced EMT, resulting in the increased capacity for invasion and migration of cells via regulation of the Twist signal pathway in FTC cells. These findings provide insight into a possible therapeutic strategy to prevent invasive and metastatic FTC.
Adenocarcinoma, Follicular/*genetics/metabolism
;
Animals
;
Anoxia/*genetics
;
Cadherins/genetics
;
Epithelial-Mesenchymal Transition/*genetics
;
Gene Expression Regulation, Neoplastic
;
Hypoxia-Inducible Factor 1, alpha Subunit/*genetics/metabolism
;
Lymphokines
;
Mice
;
Neoplasm Invasiveness
;
Phenotype
;
Real-Time Polymerase Chain Reaction
;
Signal Transduction/drug effects
;
Thyroid Neoplasms/*genetics/metabolism
;
Transcriptional Activation
;
Twist Transcription Factor/*genetics/metabolism
;
Vimentin/metabolism
2.Soluble mediators from mesenchymal stem cells suppress T cell proliferation by inducing IL-10.
Seung Ha YANG ; Min Jung PARK ; Il Hee YOON ; Su Young KIM ; So Hee HONG ; Jin Young SHIN ; Hye Young NAM ; Yong Hee KIM ; Bongi KIM ; Chung Gyu PARK
Experimental & Molecular Medicine 2009;41(5):315-324
Mesenchymal stem cells (MSCs) can inhibit T cell proliferation; however, the underlying mechanisms are not clear. In this study, we investigated the mechanisms of the immunoregulatory activity of MSCs on T cells. Irradiated MSCs co-cultured with either naive or pre-activated T cells in a mixed lymphocyte reaction (MLR) significantly suppressed T cell proliferation in a dose-dependent manner, irrespective of allogeneic disparity between responders and MSCs. Transwell assays revealed that the suppressive effect was primarily mediated by soluble factors that induced apoptosis. Splenocytes stimulated with alloantigen in the presence of the MSC culture supernatant (CS) produced a significant amount of IL-10, which was attributed to an increase in the number of IL-10 secreting cells, confirmed by an ELISPOT assay. The blockade of IL-10 and IL-10 receptor interaction by anti-IL-10 or anti-IL-10-receptor antibodies abrogated the suppressive capacity of MSC CS, indicating that IL-10 plays a major role in the suppression of T cell proliferation. The addition of 1-methyl-DL-tryptophan (1-MT), an indoleamine 2,3-dioxygenase (IDO) inhibitor, also restored the proliferative capacity of T cells. In conclusion, we demonstrated that soluble mediators from culture supernatant of MSCs could suppress the proliferation of both naive and pre-activated T cells in which IL-10 and IDO play important roles.
Animals
;
Cell Proliferation
;
Cells, Cultured
;
Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors/metabolism
;
Interleukin-10/*biosynthesis
;
*Lymphocyte Activation
;
Lymphokines/pharmacology
;
Mesenchymal Stem Cells/cytology/*metabolism
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Receptors, Interleukin-10/metabolism
;
T-Lymphocytes/cytology/*immunology/metabolism
;
Tryptophan/analogs & derivatives/pharmacology
3.Soluble mediators from mesenchymal stem cells suppress T cell proliferation by inducing IL-10.
Seung Ha YANG ; Min Jung PARK ; Il Hee YOON ; Su Young KIM ; So Hee HONG ; Jin Young SHIN ; Hye Young NAM ; Yong Hee KIM ; Bongi KIM ; Chung Gyu PARK
Experimental & Molecular Medicine 2009;41(5):315-324
Mesenchymal stem cells (MSCs) can inhibit T cell proliferation; however, the underlying mechanisms are not clear. In this study, we investigated the mechanisms of the immunoregulatory activity of MSCs on T cells. Irradiated MSCs co-cultured with either naive or pre-activated T cells in a mixed lymphocyte reaction (MLR) significantly suppressed T cell proliferation in a dose-dependent manner, irrespective of allogeneic disparity between responders and MSCs. Transwell assays revealed that the suppressive effect was primarily mediated by soluble factors that induced apoptosis. Splenocytes stimulated with alloantigen in the presence of the MSC culture supernatant (CS) produced a significant amount of IL-10, which was attributed to an increase in the number of IL-10 secreting cells, confirmed by an ELISPOT assay. The blockade of IL-10 and IL-10 receptor interaction by anti-IL-10 or anti-IL-10-receptor antibodies abrogated the suppressive capacity of MSC CS, indicating that IL-10 plays a major role in the suppression of T cell proliferation. The addition of 1-methyl-DL-tryptophan (1-MT), an indoleamine 2,3-dioxygenase (IDO) inhibitor, also restored the proliferative capacity of T cells. In conclusion, we demonstrated that soluble mediators from culture supernatant of MSCs could suppress the proliferation of both naive and pre-activated T cells in which IL-10 and IDO play important roles.
Animals
;
Cell Proliferation
;
Cells, Cultured
;
Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors/metabolism
;
Interleukin-10/*biosynthesis
;
*Lymphocyte Activation
;
Lymphokines/pharmacology
;
Mesenchymal Stem Cells/cytology/*metabolism
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Receptors, Interleukin-10/metabolism
;
T-Lymphocytes/cytology/*immunology/metabolism
;
Tryptophan/analogs & derivatives/pharmacology
4.Roles of Embryonic and Adult Lymphoid Tissue Inducer Cells in Primary and Secondary Lymphoid Tissues.
Yonsei Medical Journal 2008;49(3):352-356
The nomenclature "embryonic lymphoid tissue inducer (LTi) cell" reflects the fundamental role of the cell in secondary lymphoid tissue organization. In addition, it is equally important in primary lymphoid tissue development as it regulates central tolerance to self-antigens in the thymus. An adult LTi cell constitutively expresses two sets of tumor necrosis factor (TNF) family members, whereas its embryonic counterpart expresses only one. The first set is lymphotoxin (LT)alpha, LTbeta, and TNFalpha, which are essential for the secondary lymphoid organogenesis during embryogenesis and for maintaining an organized secondary lymphoid structure during adulthood. The second set is OX40- and CD30-ligands, which are critical for memory T cell generation. Adult LTi cells regulate adaptive immune responses by providing LTbetaR signals to stromal cells to maintain secondary lymphoid tissue structure, and determine adaptive immune responses by providing OX40 and CD30 survival signals to activated T cells in memory T cell generation. Along with the consideration of the roles of embryonic LTi cells in primary and secondary lymphoid tissues, this review highlights the roles of adult LTi cells in secondary lymphoid tissue function.
Adult
;
Animals
;
Humans
;
Lymphoid Tissue/cytology/embryology/*immunology
;
Lymphokines/immunology/metabolism
;
T-Lymphocytes, Helper-Inducer/cytology/*immunology/metabolism
;
Thymus Gland/cytology/embryology/*immunology
6.Expression of vascular endothelial growth factor and matrix metalloproteinase-2 correlates with the invasion and metastasis of hepatocellular carcinoma.
Zhimin LIU ; Lunan YAN ; Tao XIANG ; Lili JIANG ; Bin YANG
Journal of Biomedical Engineering 2003;20(2):249-254
To investigate the relationship of the expression of vascular endothelial factor (VEGF) and matrix metalloproteinase-2 (MMP-2) with the recurrence and metastasis of hepatocellular carcinoma (HCC), the expression of VEGF and MMP-2 in HCC tissue(n = 50) and in normal liver tissue(n = 30) were examined by immunochemistry. The results showed that the positive rates of VEGF and MMP-2 in HCC tissue were 86% and 60% respectively, and in normal liver tissue were 53.3% and 30% respectively. The positive rates of VEGF and MMP-2 in HCC were significantly higher than those in normal liver tissue. The positive rates of VEGF and MMP-2 in HCC with intra- or extra-hepatic metastasis were higher than those of HCC without metastasis. VEGF and MMP-2 play important roles in the invasion and metastasis of HCC.
Adult
;
Aged
;
Carcinoma, Hepatocellular
;
metabolism
;
pathology
;
secondary
;
Endothelial Growth Factors
;
biosynthesis
;
Female
;
Humans
;
Intercellular Signaling Peptides and Proteins
;
biosynthesis
;
Liver Neoplasms
;
metabolism
;
pathology
;
Lymphokines
;
biosynthesis
;
Male
;
Matrix Metalloproteinase 2
;
biosynthesis
;
Middle Aged
;
Neoplasm Invasiveness
;
Neoplasm Metastasis
;
Vascular Endothelial Growth Factor A
;
Vascular Endothelial Growth Factors
7.The roles of VEGF and C-myc in occurrence, development and metastasis of gallbladder carcinoma.
Zhimin LIU ; Lili JIANG ; Bin YANG ; Dianying LIAO
Journal of Biomedical Engineering 2003;20(1):68-70
To investigate the relationship of the expression of vascular endothelial growth factor (VEGF) and C-myc with the occurrence, development and metastasis of gallbladder carcinoma, the expression levels of VEGF and C-myc in gallbladder carcinoma tissue (n = 30) and in normal gallbladder tissue (n = 20) were examined by immunochemistry. Results show that the positive rates of VEGF and C-myc in gallbladder carcinoma tissue were 80% and 63.3% respectively, and 45% and 25% respectively in normal gallbladder tissue. The positive rates of VEGF and C-myc were significantly higher in gallbladder carcinoma than in normal gallbladder tissue. The expression of VEGF and C-myc in gallbladder carcinoma related to the metastasis of gallbladder carcinoma. VEGF and C-myc play important roles in the occurrence, development and metastasis of gallbladder carcinoma.
Adult
;
Aged
;
Endothelial Growth Factors
;
biosynthesis
;
physiology
;
Female
;
Gallbladder Neoplasms
;
metabolism
;
pathology
;
Humans
;
Intercellular Signaling Peptides and Proteins
;
biosynthesis
;
physiology
;
Lymphokines
;
biosynthesis
;
physiology
;
Male
;
Middle Aged
;
Neoplasm Metastasis
;
Proto-Oncogene Proteins c-myc
;
biosynthesis
;
physiology
;
Vascular Endothelial Growth Factor A
;
Vascular Endothelial Growth Factors
8.The in vitro isolation, culture and transfection of human fetal epidermal stem cells.
Guo-Bin DING ; Bi CHEN ; Jun-Tao HAN ; Chao-Wu TANG ; Bo-Tao WANG
Chinese Journal of Burns 2003;19(1):18-21
OBJECTIVETo explore the in vitro methods of isolation and culture of human fetal epidermal stem cells (HFESCs) and the feasibility of the cultured cells as the target cells for gene transfection.
METHODSThe HFESCs were isolated by means of type IV collagen rapid adhering method. The culture medium for HFESCs was prepared according to that for human fetal fibroblasts. The cultured cells were identified by immunohistochemistry staining of keratin-19 and integrin-beta1, cell cycle analysis and clone forming rate determination. Then the cultured cells were gene transfected in vitro by liposome mediating method in which eukaryon expression vector pcDNA3.1/VEGF165 containing vascular endothelial growth factor 165 (VEGF165) were transfected into cultured cells, or by virus vector mediating method in which recombinant adenovirus accompanied vector (raav) containing green fluorescent protein (GFP) (raav/GFP) were transfected into the cultured cells, respectively. The results of in vitro gene transfection of HFESCs were observed by immunohistochemisty staining and fluorescence microscope.
RESULTSHFESCs grew well and formed large clones with higher cloning efficiency and higher ratio of G1 cells than keratinocytes. The cultured cells were strongly positive with immunohistochemistry staining of keratin-19 and integrin-beta1. After being gene-transfected by pcDNA3.1/VEGF165, the VEGF165 of HFESCs showed positive immunohistochemistry staining property, while the HFESCs transfected by raav/GFP exhibited strong fluorescence.
CONCLUSIONHFESCs could be isolated and cultured in vitro by means of rapid adherence to type IV collagen. It seemed feasible that HFESCs were gene transfected with liposome or adeno-associated virus as the vector.
Cell Adhesion ; Cell Cycle ; physiology ; Cells, Cultured ; Endothelial Growth Factors ; genetics ; metabolism ; Epidermis ; Fetus ; G1 Phase ; Green Fluorescent Proteins ; Humans ; Immunohistochemistry ; Integrin beta1 ; analysis ; Intercellular Signaling Peptides and Proteins ; genetics ; metabolism ; Keratinocytes ; cytology ; Keratins ; analysis ; Luminescent Proteins ; genetics ; metabolism ; Lymphokines ; genetics ; metabolism ; Microscopy, Fluorescence ; Plasmids ; genetics ; Stem Cells ; chemistry ; cytology ; metabolism ; Transfection ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors
9.Down-regulation of expression of vascular endothelial growth factor induced by arsenic trioxide in bone marrow cells of chronic myeloid leukemia.
Li LI ; Ri ZHANG ; Zi-Ling ZHU
Journal of Experimental Hematology 2003;11(3):263-265
To investigate the effect of arsenic trioxide (As(2)O(3)) on vascular endothelial growth factor (VEGF) expression in different courses of chronic myeloid leukemia (CML), VEGF level was measured with ELISA in the cultural supernatants of bone marrow mononuclear cells from CML patients. The results showed that supernatants of cultured bone marrow cells from 35 CML patients (20 chronic, 8 accelerated and 7 blast crisis phases) contained significantly higher VEGF levels (649.16 +/- 382.20 pg/ml, 560.27 +/- 409.14 pg/ml and 587.18 +/- 415.28 pg/ml, respectively) than that in 15 normal control samples (152.16 +/- 150.09 pg/ml; P < 0.01), but no significant differences were found in VEGF levels among different phases of CML. The bone marrow cells treated with As(2)O(3) (5 x 10(-6)mol/L) for 72 hours resulted in significant reduction of VEGF levels (down to 396.66 +/- 257.47 pg/ml, 363.42 +/- 239.85 pg/ml and 407.47 +/- 219.38 pg/ml, respectively) (P < 0.05). In conclusion, abnormal high expression of VEGF plays a role in the pathogenetic course of CML and it is probably an additional anticancer mechanism for As(2)O(3) to inhibit VEGF expression of leukemic cells.
Adolescent
;
Adult
;
Aged
;
Arsenicals
;
pharmacology
;
Bone Marrow Cells
;
drug effects
;
metabolism
;
Cells, Cultured
;
Child
;
Culture Media, Conditioned
;
chemistry
;
Down-Regulation
;
drug effects
;
Endothelial Growth Factors
;
metabolism
;
Enzyme-Linked Immunosorbent Assay
;
Female
;
Humans
;
Intercellular Signaling Peptides and Proteins
;
metabolism
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive
;
blood
;
pathology
;
Lymphokines
;
metabolism
;
Male
;
Middle Aged
;
Oxides
;
pharmacology
;
Vascular Endothelial Growth Factor A
;
Vascular Endothelial Growth Factors
10.A new method for construction of EGFP-labled recombinant adenovirus containing hVEGF(165) and its property in vitro.
Zhao-Dong ZHONG ; Ping ZOU ; Shi-Ang HUANG ; Zhong-Bo HU ; Ling-Bo LIU ; Yun-Ping LU
Journal of Experimental Hematology 2003;11(3):238-242
By using AdEasy system, which is based on the homologous recombination in bacteria, an EGFP labled recombinant adenovirus vector containing hVEGF(165) was generated quickly and its property was studied in vitro. First, hVEGF(165) coding sequence was subcloned into the shuttle plasmid pAdTrack-CMV, then linearized and cotransferred with adenoviral backbone vector pAdEasy-1 into E. coli strain BJ(5183). After positive kanamycin-resistant colony was picked up, the recombinant adenoviral plasmid was identified by restriction analysis with PacI and transfected into HEK 293 cells to assembly replication-defective adenovirus Ad-EGFP/hVEGF(165). The further amplified recombinant adenoviruses were purified by CsCl banding at 32,000 rpm for 18 to 24 hours. Electron microscopy and PCR were performed for testing the recombinant adenovirus. The results showed that the purified particles were homogenous hexagon with a high titer up to 2 x 10(12)pfu/ml. An amplified band of 540 bp fragment demonstrated the successful insert of hVEGF(165). Under fluorescence microscopy, the expression of EGFP was easily detected in HEK 293 and other target cells. The maximal stimulating effect on the proliferation of hUVEC was obtained when the given multiplicity of infection (MOI) of Ad-EGFP/hVEGF(165) was 100. The rate of EGFP positive mouse bone marrow mononuclear cells analysed by flow cytometry was 27.3% after 24 hour-incubation with Ad-EGFP/hVEGF(165) (MOI = 100), and the expression of hVEGF(165) protein in the conditioned medium was 1385 +/- 332 pg/10(6) cells. It is concluded that the construction of adenovirus vector by homologous recombination in bacteria using AdEasy system can be quickly and easily performed, and the prepared high titer of Ad-EGFP/hVEGF(165) is an efficient helpful vector to transfer genes into target cells, all of which make the further in vivo experiments with VEGF(165) possible.
Adenoviridae
;
genetics
;
ultrastructure
;
Animals
;
Cell Division
;
genetics
;
Cell Line
;
Cells, Cultured
;
Cloning, Molecular
;
methods
;
Endothelial Growth Factors
;
genetics
;
metabolism
;
Endothelium, Vascular
;
cytology
;
metabolism
;
Genetic Vectors
;
genetics
;
ultrastructure
;
Green Fluorescent Proteins
;
Humans
;
Intercellular Signaling Peptides and Proteins
;
genetics
;
metabolism
;
Leukocytes, Mononuclear
;
cytology
;
metabolism
;
Luminescent Proteins
;
genetics
;
metabolism
;
Lymphokines
;
genetics
;
metabolism
;
Mice
;
Mice, Inbred BALB C
;
Microscopy, Electron
;
Microscopy, Fluorescence
;
Recombinant Fusion Proteins
;
genetics
;
metabolism
;
Transfection
;
Vascular Endothelial Growth Factor A
;
Vascular Endothelial Growth Factors

Result Analysis
Print
Save
E-mail