1.LAG-3 and PD-1 combination therapy in tumor immunotherapy.
Chinese Journal of Cellular and Molecular Immunology 2025;41(4):355-362
Programmed death 1 (PD-1) and its ligand (PD-L1) serve as crucial targets in cancer immunotherapy, and their inhibitors have significantly improved the prognosis of many patients with malignant tumors. However, the issues of drug resistance and limited overall response rate associated with monotherapy remain prevalent. As a new generation of immune checkpoints, lymphocyte activation gene 3 (LAG-3) synergistically enhances the suppression of T cells alongside PD-1 in various cancers. Combining the blockade of both PD-1 and LAG-3 yields stronger anti-tumor immune effects compared to blocking either target alone, thereby reversing the immunosuppressive state of the tumor microenvironment and reducing the occurrence of resistance. This review covers the structural characteristics of LAG-3 and unveils its specific interactions with PD-1 across multiple cancers, providing a novel reference for overcoming the limitations of single-agent therapy.
Humans
;
Neoplasms/immunology*
;
Immunotherapy/methods*
;
Programmed Cell Death 1 Receptor/metabolism*
;
Lymphocyte Activation Gene 3 Protein
;
Antigens, CD/metabolism*
;
Animals
;
Tumor Microenvironment/immunology*
;
Immune Checkpoint Inhibitors/therapeutic use*
2.A novel fully human LAG-3 monoclonal antibody LBL-007 combined with PD-1 antibody inhibits proliferation, migration and invasion of tumor cells via blocking NF-κB pathway.
Huinan ZHOU ; Jianfei LIU ; Chenglin WU ; Kewei QIN ; Lijun ZHOU
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):398-405
Objective To investigate the effects of LBL-007, a novel fully human lymphocyte activation gene 3 (LAG-3) monoclonal antibody, in combination with programmed cell death protein 1 (PD-1) antibody, on the invasion, migration and proliferation of tumor cells, and to elucidate the underlying mechanisms. Methods Human lymphocyte cells Jurkat were co-cultured with A549 and MGC803 tumor cell lines and treated with the isotype control antibody human IgG, LBL-007, anti-PD-1 antibody BE0188, or tumor necrosis factor-alpha (TNF-α, the NF-κB signaling pathway agonist). Tumor cell proliferation was assessed using a colony formation assay; invasion was measured by TranswellTM assay; migration was evaluated using a wound healing assay. Western blotting was employed to determine the expression levels of NF-κB pathway-related proteins: IκB inhibitor kinase alpha (Ikkα), phosphorylated Ikkα (p-IKKα), NF-κB subunit p65, phosphorylated p65 (p-p65), NF-κB Inhibitor Alpha (IκBα), phosphorylated IκBα (p-IκBα), matrix metalloproteinase 9 (MMP9), and MMP2. Results Compared with the control and IgG isotype groups, LBL-007 and BE0188 significantly reduced tumor cell proliferation, invasion, and migration. They also decreased the phosphorylation of p-IKKα, p-p65 and p-IκBα, and the expression of MMP9 and MMP2 of tumor cells in the co-culture system. The combined treatment of LBL-007 and BE0188 enhanced inhibitory effects. Treatment with the NF-κB signaling pathway agonist TNF-α reversed the suppressive effects of LBL-007 and BE0188 on tumor cell proliferation, invasion, migration, and NF-κB signaling. Conclusion LBL-007 and anti-PD-1 antibody synergistically inhibit the invasion, migration, and proliferation of A549 and MGC803 tumor cells by blocking the NF-κB signaling pathway.
Humans
;
Cell Proliferation/drug effects*
;
Cell Movement/drug effects*
;
Signal Transduction/drug effects*
;
NF-kappa B/metabolism*
;
Neoplasm Invasiveness
;
Antibodies, Monoclonal/pharmacology*
;
Programmed Cell Death 1 Receptor/antagonists & inhibitors*
;
Cell Line, Tumor
;
Antigens, CD/immunology*
;
Lymphocyte Activation Gene 3 Protein
;
A549 Cells
;
I-kappa B Kinase/metabolism*
;
Jurkat Cells
;
Matrix Metalloproteinase 9/metabolism*
3.Preparation and identification of monoclonal antibodies against human LAG3 by immunizing mice with recombinant eukaryotic cell antigens.
Chinese Journal of Cellular and Molecular Immunology 2024;40(12):1110-1114
Objective To prepare mouse anti-human lymphocyte activation gene 3 (LAG3) monoclonal antibody (mAb) and perform immunological identification of the antibody. Methods BALB/c mice were immunized with LAG3-mLumin-3T3 cells, which stably express the extracellular and transmembrane regions of human LAG3 in mouse 3T3 cells. The secretion of anti-human LAG3 antibodies in mouse serum was assessed using flow cytometry and immunofluorescence. SP2/0 cells were injected subcutaneously into the mice to elicit solid myelomas, and mouse myeloma cells were subsequently isolated. Spleen cells from the immunized mice were fused with the myeloma cells to establish hybridomas, which were then separated using the limiting dilution method. Flow cytometry was used to detect LAG3 mAbs in the hybridoma culture medium. To map the epitopes recognized by these mAbs, 3T3 cells expressing individual extracellular domains of LAG3(LAG3 domains 1/-2/-3/-4-3T3) were used. Flow cytometry was also applied to analyze LAG3 expression on activated human peripheral blood mononuclear cells (PBMC) before and after co-culture with the LAG3 mAbs. Results Mice immunized with the recombinant eukaryotic cell antigen produced anti-LAG3 antibodies. The generated hybridomas secreted mouse anti-human LAG3 mAbs, with each hybridoma line recognizing different LAG3 antigenic domains. Conclusion Mouse anti-human LAG3 mAbs were successfully generated, with different hybridoma clones secreting antibodies that recognize distinct LAG3 epitopes. These findings lay the groundwork for further studies into the biological properties of LAG3 and the development of diagnostic reagents and therapeutic blocking antibodies for cancer treatment.
Animals
;
Humans
;
Mice
;
Lymphocyte Activation Gene 3 Protein
;
Antibodies, Monoclonal/immunology*
;
Mice, Inbred BALB C
;
Hybridomas/immunology*
;
Antigens, CD/genetics*
;
Immunization
;
Recombinant Proteins/immunology*
;
Female
;
Eukaryotic Cells/immunology*
;
Flow Cytometry
;
Epitopes/immunology*
Result Analysis
Print
Save
E-mail