1.Uniportal endoscopic decompression and debridement for infectious diseases of spine with neurological deficits: a retrospective study in China
Hui LV ; Jianhong ZHOU ; Yuan GUO ; Sheng LIAO ; Hui CHEN ; Fei LUO ; Jianzhong XU ; Zhongrong ZHANG ; Zehua ZHANG
Asian Spine Journal 2025;19(2):205-216
Methods:
This retrospective study analyzed 32 consecutive IDS patients who underwent UEDD surgery. Clinical features, laboratory data (erythrocyte sedimentation rate and C-reactive protein), and treatment outcomes were analyzed.
Results:
Definite microorganisms were identified in 27 patients (84.3%), with 24 (88.9%) meeting cure criteria. The cure rate was significantly higher in the detected pathogen group compared to the undetected pathogen group (88.9% vs. 80%; χ²=19.36, p<0.0001). Metagenomic next generation sequencing (mNGS) provided faster diagnosis (41.72±6.81 hours) compared to tissue culture (95.74±35.47 hours, p<0.05). The predominant causative pathogen was Mycobacterium tuberculosis, followed by Staphylococcus aureus. Significant improvements were observed in Visual Analog Scale pain scores, from a mean of 7.9 preoperatively to 1.06 at 1 year postoperatively. The Oswestry Disability Index revealed a similar trend, showing significant improvement (p<0.05).
Conclusions
UEDD is a viable alternative to traditional open surgery for managing IDS in high-risk patients. UEDD offers a dual therapeutic-diagnostic advantage during the initial admission phase, enabling simultaneous debridement, neurological decompression, and targeted biopsy in a single intervention. Compared with traditional tissue culture, mNGS enables rapid microbiological diagnosis and extensive pathogen coverage.
2.Uniportal endoscopic decompression and debridement for infectious diseases of spine with neurological deficits: a retrospective study in China
Hui LV ; Jianhong ZHOU ; Yuan GUO ; Sheng LIAO ; Hui CHEN ; Fei LUO ; Jianzhong XU ; Zhongrong ZHANG ; Zehua ZHANG
Asian Spine Journal 2025;19(2):205-216
Methods:
This retrospective study analyzed 32 consecutive IDS patients who underwent UEDD surgery. Clinical features, laboratory data (erythrocyte sedimentation rate and C-reactive protein), and treatment outcomes were analyzed.
Results:
Definite microorganisms were identified in 27 patients (84.3%), with 24 (88.9%) meeting cure criteria. The cure rate was significantly higher in the detected pathogen group compared to the undetected pathogen group (88.9% vs. 80%; χ²=19.36, p<0.0001). Metagenomic next generation sequencing (mNGS) provided faster diagnosis (41.72±6.81 hours) compared to tissue culture (95.74±35.47 hours, p<0.05). The predominant causative pathogen was Mycobacterium tuberculosis, followed by Staphylococcus aureus. Significant improvements were observed in Visual Analog Scale pain scores, from a mean of 7.9 preoperatively to 1.06 at 1 year postoperatively. The Oswestry Disability Index revealed a similar trend, showing significant improvement (p<0.05).
Conclusions
UEDD is a viable alternative to traditional open surgery for managing IDS in high-risk patients. UEDD offers a dual therapeutic-diagnostic advantage during the initial admission phase, enabling simultaneous debridement, neurological decompression, and targeted biopsy in a single intervention. Compared with traditional tissue culture, mNGS enables rapid microbiological diagnosis and extensive pathogen coverage.
3.Uniportal endoscopic decompression and debridement for infectious diseases of spine with neurological deficits: a retrospective study in China
Hui LV ; Jianhong ZHOU ; Yuan GUO ; Sheng LIAO ; Hui CHEN ; Fei LUO ; Jianzhong XU ; Zhongrong ZHANG ; Zehua ZHANG
Asian Spine Journal 2025;19(2):205-216
Methods:
This retrospective study analyzed 32 consecutive IDS patients who underwent UEDD surgery. Clinical features, laboratory data (erythrocyte sedimentation rate and C-reactive protein), and treatment outcomes were analyzed.
Results:
Definite microorganisms were identified in 27 patients (84.3%), with 24 (88.9%) meeting cure criteria. The cure rate was significantly higher in the detected pathogen group compared to the undetected pathogen group (88.9% vs. 80%; χ²=19.36, p<0.0001). Metagenomic next generation sequencing (mNGS) provided faster diagnosis (41.72±6.81 hours) compared to tissue culture (95.74±35.47 hours, p<0.05). The predominant causative pathogen was Mycobacterium tuberculosis, followed by Staphylococcus aureus. Significant improvements were observed in Visual Analog Scale pain scores, from a mean of 7.9 preoperatively to 1.06 at 1 year postoperatively. The Oswestry Disability Index revealed a similar trend, showing significant improvement (p<0.05).
Conclusions
UEDD is a viable alternative to traditional open surgery for managing IDS in high-risk patients. UEDD offers a dual therapeutic-diagnostic advantage during the initial admission phase, enabling simultaneous debridement, neurological decompression, and targeted biopsy in a single intervention. Compared with traditional tissue culture, mNGS enables rapid microbiological diagnosis and extensive pathogen coverage.
4.Investigation on the current status and optimization strategies for the standardized on-the-job training for community clinical pharmacists in Shanghai
Yangjiayi XIANG ; Jing SHENG ; Liping WANG ; Lie LUO ; Yuan YUAN ; Xiaodan ZHANG ; Yan LI ; Bin WANG ; Guanghui LI
China Pharmacy 2025;36(13):1568-1573
OBJECTIVE To systematically investigate the current status and effectiveness of the standardized on-the-job training program for community clinical pharmacists in Shanghai, and to provide a scientific basis for optimizing the training scheme. METHODS A questionnaire survey was conducted to collect the data from trainees and mentor pharmacists who participated in the program between 2016 and 2024. The survey examined their basic information, evaluations of the training scheme, satisfaction with training outcomes, and suggestions for improvement. Statistical analyses were also conducted. RESULTS A total of 420 valid responses were collected, including 340 from trainees and 80 from mentor pharmacists. Before training, only 30.29% of trainees were engaged in clinical pharmacy-related work, whereas this proportion increased to 73.24% after training. Most mentor pharmacists had extensive experience in clinical pharmacy (76.25% with ≥5 years of experience) and mentoring (78.75% with ≥3 teaching sessions). Totally 65.59% of trainees and 55.00% of mentor pharmacists believed that blended training yielded the best learning outcomes. Over 80.00% of both trainees and mentor pharmacists considered the overall training duration, theoretical study time, and practical training time to be reasonable. More than 95.00% of trainees and mentor pharmacists agreed that the homework and assessment schemes were appropriate. Trainees rated the relevance of training content to their actual work highly (with an average relevance score >4.5), though they perceived the chronic disease medication therapy management module as significantly more challenging than the prescription review and evaluation module and the home-based pharmaceutical care module. The average satisfaction score of trainees and mentor pharmacists with the training effectiveness of each project was above 4 points, indicating a high overall satisfaction. Inadequate provision of teaching resources was unanimously recognized by trainees and mentor pharmacists as the key area requiring improvement. CONCLUSIONS The standardized on-the-job training program for community clinical pharmacists in Shanghai has contributed to improving pharmaceutical services in community healthcare settings. However, ongoing improvements must concentrate on content design, resource development, and faculty cultivation.
5.Biomedical Data in China: Policy, Accumulation, Platform Construction, and Applications.
Jing-Chen ZHANG ; Jing-Wen SUN ; Xiao-Meng LIU ; Jin-Yan LIU ; Wei LUO ; Sheng-Fa ZHANG ; Wei ZHOU
Chinese Medical Sciences Journal 2025;40(1):9-17
Biomedical data is surging due to technological innovations and integration of multidisciplinary data, posing challenges to data management. This article summarizes the policies, data collection efforts, platform construction, and applications of biomedical data in China, aiming to identify key issues and needs, enhance the capacity-building of platform construction, unleash the value of data, and leverage the advantages of China's vast amount of data.
China
;
Humans
;
Biomedical Research
;
Data Management
;
Data Collection
6.Progress in investigating astrocyte heterogeneity after spinal cord injury based on single-cell sequencing technology.
Lei DU ; Yan-Jun ZHANG ; Tie-Feng GUO ; Lin-Zhao LUO ; Ping-Yi MA ; Jia-Ming LI ; Sheng TAN
China Journal of Orthopaedics and Traumatology 2025;38(5):544-548
In recent years, the study of single-cell transcriptome sequencing technology in the heterogeneity of astrocytes (astrocytes) after spinal cord injury (SCI) has provided new perspectives on post-traumatic nerve regeneration and repair. To provide a review on the research progress of single-cell sequencing technology in astrocytes after spinal cord injury (SCI), and to more comprehensively and deeply elaborate the application of single-cell sequencing technology in the field of astrocytes after SCI. Single-cell sequencing technology can analyse the transcriptomes of individual cells in a high-throughput manner, thus revealing fine differences in cell types and states. By using single-cell sequencing technology, the heterogeneity of astrocytes after SCI and their association with nerve regeneration and repair were revealed. In conclusion, the application of single-cell sequencing technology provides an important tool to reveal the heterogeneity of astrocytes after SCI, to further explore the mechanisms of astrocytes in SCI, and to develop intervention strategies targeting their regulatory mechanisms in order to improve the therapeutic efficacy of SCI. The discovery of changes in astrocyte transcriptome dynamics has improved researchers' understanding of spinal cord injury lesion progression and provided new insights into the treatment of spinal cord injury at different time points. To date, all of these findings need to be validated by more basic research and sufficient clinical trials. In the future, single-cell sequencing technology, through interdisciplinary collaboration with bioinformatics, computer science, tissue engineering, and clinical medicine, is expected to open a new window for the treatment of spinal cord injury.
Spinal Cord Injuries/metabolism*
;
Astrocytes/cytology*
;
Single-Cell Analysis/methods*
;
Humans
;
Animals
;
Transcriptome
;
Nerve Regeneration
7.Orexin-A promotes motor function recovery of rats with spinal cord injury by regulating ionotropic glutamate receptors.
Guanglü HE ; Wanyu CHU ; Yan LI ; Xin SHENG ; Hao LUO ; Aiping XU ; Mingjie BIAN ; Huanhuan ZHANG ; Mengya WANG ; Chao ZHENG
Journal of Southern Medical University 2025;45(5):1023-1030
OBJECTIVES:
To investigate the effect of orexin-A-mediated regulation of ionotropic glutamate receptors for promoting motor function recovery in rats with spinal cord injury (SCI).
METHODS:
Thirty-six newborn SD rats (aged 7-14 days) were randomized into 6 groups (n=6), including a normal control group, a sham-operated group, and 4 SCI groups with daily intrathecal injection of saline, DNQX, orexin-A, or orexin-A+DNQX for 3 consecutive days after PCI. Motor function of the rats were evaluated using blood-brain barrier (BBB) score and inclined plane test 1 day before and at 1, 3, and 7 days after SCI. For patch-clamp experiment, spinal cord slices from newborn rats in the control, sham-operated, SCI, and SCI+orexin groups were prepared, and ventral horn neurons were acutely isolated to determine the reversal potential and dynamic indicators of glutamate receptor-mediated currents under glutamate perfusion.
RESULTS:
At 3 and 7 days after SCI, the orexin-A-treated rats showed significantly higher BBB scores and grip tilt angles than those with other interventions. Compared with those treated with DNQX alone, the rats receiving the combined treatment with orexin and DNQX had significantly higher BBB scores and grip tilt angles on day 7 after PCI. In the patch-clamp experiment, the ventral horn neurons from SCI rat models exhibited obviously higher reversal potential and greater rise slope of glutamate current with shorter decay time than those from sham-operated and orexin-treated rats.
CONCLUSIONS
Orexin-A promotes motor function recovery in rats after SCI possibly by improving the function of the ionotropic glutamate receptors.
Animals
;
Spinal Cord Injuries/drug therapy*
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Ionotropic Glutamate/metabolism*
;
Recovery of Function/drug effects*
;
Orexins/pharmacology*
;
Male
;
Female
;
Animals, Newborn
;
Neuropeptides/pharmacology*
;
Intracellular Signaling Peptides and Proteins/pharmacology*
8.Activation of Centromedial Amygdala GABAergic Neurons Produces Hypotension in Mice.
Xiaoyi WANG ; Ziteng YUE ; Luo SHI ; Wei HE ; Liuqi SHAO ; Yuhang LIU ; Jinye ZHANG ; Shangyu BI ; Tianjiao DENG ; Fang YUAN ; Sheng WANG
Neuroscience Bulletin 2025;41(5):759-774
The central amygdala (CeA) is a crucial modulator of emotional, behavioral, and autonomic functions, including cardiovascular responses. Despite its importance, the specific circuit by which the CeA modulates blood pressure remains insufficiently explored. Our investigations demonstrate that photostimulation of GABAergic neurons in the centromedial amygdala (CeMGABA), as opposed to those in the centrolateral amygdala (CeL), produces a depressor response in both anesthetized and freely-moving mice. In addition, activation of CeMGABA axonal terminals projecting to the nucleus tractus solitarius (NTS) significantly reduces blood pressure. These CeMGABA neurons form synaptic connections with NTS neurons, allowing for the modulation of cardiovascular responses by influencing the caudal or rostral ventrolateral medulla. Furthermore, CeMGABA neurons targeting the NTS receive dense inputs from the CeL. Consequently, stimulation of CeMGABA neurons elicits hypotension through the CeM-NTS circuit, offering deeper insights into the cardiovascular responses associated with emotions and behaviors.
Animals
;
GABAergic Neurons/physiology*
;
Male
;
Central Amygdaloid Nucleus/physiopathology*
;
Hypotension/physiopathology*
;
Mice
;
Blood Pressure/physiology*
;
Mice, Inbred C57BL
;
Solitary Nucleus/physiology*
;
Photic Stimulation
;
Neural Pathways/physiology*
9.Hippocampal Extracellular Matrix Protein Laminin β1 Regulates Neuropathic Pain and Pain-Related Cognitive Impairment.
Ying-Chun LI ; Pei-Yang LIU ; Hai-Tao LI ; Shuai WANG ; Yun-Xin SHI ; Zhen-Zhen LI ; Wen-Guang CHU ; Xia LI ; Wan-Neng LIU ; Xing-Xing ZHENG ; Fei WANG ; Wen-Juan HAN ; Jie ZHANG ; Sheng-Xi WU ; Rou-Gang XIE ; Ceng LUO
Neuroscience Bulletin 2025;41(12):2127-2147
Patients suffering from nerve injury often experience exacerbated pain responses and complain of memory deficits. The dorsal hippocampus (dHPC), a well-defined region responsible for learning and memory, displays maladaptive plasticity upon injury, which is assumed to underlie pain hypersensitivity and cognitive deficits. However, much attention has thus far been paid to intracellular mechanisms of plasticity rather than extracellular alterations that might trigger and facilitate intracellular changes. Emerging evidence has shown that nerve injury alters the microarchitecture of the extracellular matrix (ECM) and decreases ECM rigidity in the dHPC. Despite this, it remains elusive which element of the ECM in the dHPC is affected and how it contributes to neuropathic pain and comorbid cognitive deficits. Laminin, a key element of the ECM, consists of α-, β-, and γ-chains and has been implicated in several pathophysiological processes. Here, we showed that peripheral nerve injury downregulates laminin β1 (LAMB1) in the dHPC. Silencing of hippocampal LAMB1 exacerbates pain sensitivity and induces cognitive dysfunction. Further mechanistic analysis revealed that loss of hippocampal LAMB1 causes dysregulated Src/NR2A signaling cascades via interaction with integrin β1, leading to decreased Ca2+ levels in pyramidal neurons, which in turn orchestrates structural and functional plasticity and eventually results in exaggerated pain responses and cognitive deficits. In this study, we shed new light on the functional capability of hippocampal ECM LAMB1 in the modulation of neuropathic pain and comorbid cognitive deficits, and reveal a mechanism that conveys extracellular alterations to intracellular plasticity. Moreover, we identified hippocampal LAMB1/integrin β1 signaling as a potential therapeutic target for the treatment of neuropathic pain and related memory loss.
Animals
;
Laminin/genetics*
;
Hippocampus/metabolism*
;
Neuralgia/metabolism*
;
Cognitive Dysfunction/etiology*
;
Male
;
Peripheral Nerve Injuries/metabolism*
;
Extracellular Matrix/metabolism*
;
Integrin beta1/metabolism*
;
Pyramidal Cells/metabolism*
;
Signal Transduction
10.The lysine methyltransferase SMYD2 facilitates neointimal hyperplasia by regulating the HDAC3-SRF axis.
Xiaoxuan ZHONG ; Xiang WEI ; Yan XU ; Xuehai ZHU ; Bo HUO ; Xian GUO ; Gaoke FENG ; Zihao ZHANG ; Xin FENG ; Zemin FANG ; Yuxuan LUO ; Xin YI ; Ding-Sheng JIANG
Acta Pharmaceutica Sinica B 2024;14(2):712-728
Coronary restenosis is an important cause of poor long-term prognosis in patients with coronary heart disease. Here, we show that lysine methyltransferase SMYD2 expression in the nucleus is significantly elevated in serum- and PDGF-BB-induced vascular smooth muscle cells (VSMCs), and in tissues of carotid artery injury-induced neointimal hyperplasia. Smyd2 overexpression in VSMCs (Smyd2-vTg) facilitates, but treatment with its specific inhibitor LLY-507 or SMYD2 knockdown significantly inhibits VSMC phenotypic switching and carotid artery injury-induced neointima formation in mice. Transcriptome sequencing revealed that SMYD2 knockdown represses the expression of serum response factor (SRF) target genes and that SRF overexpression largely reverses the inhibitory effect of SMYD2 knockdown on VSMC proliferation. HDAC3 directly interacts with and deacetylates SRF, which enhances SRF transcriptional activity in VSMCs. Moreover, SMYD2 promotes HDAC3 expression via tri-methylation of H3K36 at its promoter. RGFP966, a specific inhibitor of HDAC3, not only counteracts the pro-proliferation effect of SMYD2 overexpression on VSMCs, but also inhibits carotid artery injury-induced neointima formation in mice. HDAC3 partially abolishes the inhibitory effect of SMYD2 knockdown on VSMC proliferation in a deacetylase activity-dependent manner. Our results reveal that the SMYD2-HDAC3-SRF axis constitutes a novel and critical epigenetic mechanism that regulates VSMC phenotypic switching and neointimal hyperplasia.

Result Analysis
Print
Save
E-mail