1.Effect of cisplatin combined with Guiqi Yiyuan Ointment on Lewis lung cancer-bearing mice by regulating EGFR/MAPK pathway.
Peng-Fei ZHANG ; Jin-Hua WANG ; Jian-Qing LIANG ; Hui-Juan ZHANG ; Jin-Tian LI
China Journal of Chinese Materia Medica 2025;50(2):472-480
Based on the epidermal growth factor receptor(EGFR)/mitogen-activated protein kinase(MAPK) signaling pathway-mediated cell proliferation, this study explores the effect of cisplatin combined with Guiqi Yiyuan Ointment on Lewis lung cancer-bearing mice. A total of 60 male C57BL/6 mice were randomly divided into a blank group with 10 mice and a modeling group with 50 mice. After modeling, they were randomly divided into the model group, cisplatin group, and low-, medium-, and high-dose groups of cisplatin combined with Guiqi Yiyuan Ointment, with 10 mice in each group. After 14 days of medication, the general condition of the mice was observed; body weight was measured, and organ index and tumor inhibition rate were calculated. Hematoxylin-eosin(HE) staining was used to observe the pathological morphology changes in tumor tissue. Immunohistochemistry was used to detect the positive rate of Ki-67 antigen(Ki-67) and proliferating cell nuclear antigen(PCNA) in tumor tissue. Western blot and real time-quantitative polymerase chain reaction(qPCR) were used to detect the expression of related proteins and mRNA in tumor tissue. Flow cytometry was used to detect the cell cycle of tumor cells in tumor tissue. The results showed that compared with that in the blank group, the general condition of mice in the model group deteriorated; the body weight, as well as thymus and spleen index of mice in the model group decreased after 14 days of medication. Compared with that in the model group, the general condition of mice in the cisplatin group deteriorated, while the condition of mice in the combined groups improved; the body weight, as well as thymus and spleen index of mice in the cisplatin group decreased, while the three indicators in the combined groups increased; the tumor weight of each medication group decreased, and the tumor inhibition rate increased; there were varying degrees of necrosis in tumor cells of each medication group, and the tightness of tumor cells, the increase in the number of cell nuclei and chromatin, and mitosis all decreased. The positive rate of Ki-67 and PCNA, as well as the protein expression and ratio of p-EGFR/EGFR, rat sarcoma viral oncogene homolog(Ras), phosphorylated Raf-1 protein kinase(p-Raf-1)/Raf-1, phosphorylated mitogen-activated protein kinase kinase(p-MEK)/MEK, phosphorylated extracellular signal-regulated kinase(p-ERK)/ERK and the mRNA expression of EGFR, Ras, Raf-1, MEK, and ERK all decreased. The proportion of tumor cells in the G_0/G_1 phase of each medication group increased, and that in the S phase decreased. In addition, there was no significant difference in the G_2/M phase. Compared with that of the cisplatin group, the tumor weight of the combined groups decreased, and the tumor inhibition rate increased. The necrosis and mitosis of tumor cells in the combined groups were more pronounced; the positive rate of Ki-67 and PCNA, the protein expression and ratio of p-EGFR/EGFR, Ras, p-Raf-1/Raf-1, p-MEK/MEK, and p-ERK/ERK, as well as the mRNA expression of EGFR, Ras, Raf-1, MEK, and ERK in the combined groups all decreased. The proportion of tumor cells in the G_0/G_1 phase of the combined medium-and high-dose groups increased, and that in the S phase decreased. There was no significant difference in the proportion of tumor cells of the combined groups in the G_2/M phase. This indicates that the combination of cisplatin and Guiqi Yiyuan Ointment can enhance the anti-tumor effect of cisplatin on tumor-bearing mice, and the mechanism may be associated with the inhibition of the EGFR/MAPK pathway, which accelerates the arrest of tumor cells in the G_0/G_1 phase, thereby inhibiting the proliferation of tumor cells. At the same time, the study also indicates that Guiqi Yiyuan Ointment may reduce the damage of tumors to mice and the toxic side effects brought by cisplatin chemotherapy.
Animals
;
Male
;
Carcinoma, Lewis Lung/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
ErbB Receptors/genetics*
;
Mice
;
Cisplatin/administration & dosage*
;
Mice, Inbred C57BL
;
Cell Proliferation/drug effects*
;
Ointments/administration & dosage*
;
MAP Kinase Signaling System/drug effects*
;
Humans
;
Antineoplastic Agents/administration & dosage*
;
Lung Neoplasms/metabolism*
2.TIPE2 inhibits the stemness of lung cancer cells by regulating the phenotypic polarization of tumor-associated macrophages.
Chinese Journal of Cellular and Molecular Immunology 2025;41(8):680-686
Objective To investigate the regulatory effect of tumor necrosis factor-α-induced protein-8-like factor 2 (TIPE2) on the phenotype of lung cancer tumor-associated macrophages (TAM) and its influence on the stemness of lung cancer cells. Methods Mouse macrophage cell line RAW264.7 was cultured and infected with either LV-TIPE2 lentivirus or negative control LV-NC lentivirus. The TIPE2 expression in infected cells was assessed by real-time quantitative PCR (RT-qPCR) and Western blotting to verify transfection efficiency. The infected RAW264.7 cells were co-cultured with lung cancer cell line A549, and were divided into four groups: control group (RAW264.7 cells or A549 cells cultured alone), TAM group (RAW264.7 cells co-cultured with A549 cells), LV-NC group (RAW264.7 cells infected with LV-NC and co-cultured with A549 cells), LV-TIPE2 group (RAW264.7 cells infected with LV- TIPE2 and co-cultured with A549 cells). The RAW264.7 cells were collected after co-culture, and the expression of mannose receptor (CD206) protein of M2 macrophages was detected by cellular immunofluorescence staining. The proportions of M1 and M2 macrophages were detected by flow cytometry. After co-culture, A549 cells were collected, and their activity was assessed by CCK-8 assay. Self-renewal ability was evaluated using tumor cell pelleting experiment. The expression of stemness marker proteins-including cluster of differentiation 133 (CD133), transmembrane adhesion molecule (CD44), sex-determining region Y-box protein 2 (SOX2) and octamer-binding transcription factor 4 (OCT4)-was detected by Western blot. Results Compared with the control group or LV-NC group, the relative mRNA and protein expression levels of TIPE2 in RAW264.7 cells from the LV-TIPE2 group were significantly upregulated. Compared with the control group, the fluorescence intensity of M2-type macrophage marker CD206 protein in RAW264.7 cells from the TAM group was significantly increased, the proportion of M1-type macrophages was significantly decreased, and the proportion of M2-type macrophages was significantly increased. In contrast, compared with the TAM group, the fluorescence intensity of CD206 protein in RAW264.7 cells from the LV-TIPE2 group was significantly decreased, the proportion of M1-type macrophages was significantly increased, and the proportion of M2-type macrophages was significantly decreased. Compared with the control group, the proliferation activity of A549 cells in TAM group was significantly increased, the number of tumor pellet formation was significantly increased, and the relative expression levels of CD133, CD44, SOX2 and OCT4 were significantly up-regulated. However, compared with the TAM group, the proliferation activity of A549 cells from the LV-TIPE2 group was significantly decreased, the number of tumor pellet formation was significantly decreased, and the relative expression levels of CD133, CD44, SOX2 and OCT4 were significantly decreased. Conclusion TIPE2 can suppress the stemness of lung cancer cells by inhibiting the polarization of macrophages to M2-type, thereby exerting an anticancer effect.
Animals
;
Mice
;
Humans
;
Tumor-Associated Macrophages/metabolism*
;
Lung Neoplasms/genetics*
;
Intracellular Signaling Peptides and Proteins/metabolism*
;
RAW 264.7 Cells
;
A549 Cells
;
Phenotype
;
Coculture Techniques
;
Receptors, Cell Surface/metabolism*
;
Neoplastic Stem Cells/metabolism*
;
Mannose Receptor
;
Mannose-Binding Lectins/metabolism*
;
Lectins, C-Type/metabolism*
;
Cell Polarity
;
Macrophages/metabolism*
3.Real-world Study of Icotinib in EGFR Mutant Non-small Cell Lung Cancer Based on the Therapeutic Drug Monitoring.
Sen HAN ; Lan MI ; Jian FANG ; Xu MA
Chinese Journal of Lung Cancer 2025;28(1):33-39
BACKGROUND:
In the real world, the plasma drug concentration range of Icotinib treated with epidermal growth factor receptor (EGFR) gene mutant non-small cell lung cancer (NSCLC) is not yet clear, and there may be a correlation between drug concentration and its efficacy, as well as adverse reactions. This study conducted therapeutic drug monitoring (TDM) of Icotinib. The aim of this study was to analyze the drug exposure of Icotinib in targeted therapy for NSCLC, and to investigate the relationship between Icotinib drug concentration and its efficacy and safety.
METHODS:
Prospective blood samples were collected from NSCLC patients with EGFR-sensitive mutations who received treatment with Icotinib in Peking University Cancer Hospital from April 2022 to July 2024. The drug trough concentration of Icotinib in plasma was detected, and the correlation between drug concentration and efficacy, as well as the toxic side effects, were further analyzed based on the patient's clinical medical records.
RESULTS:
22 patients who were treated with Icotinib underwent TDM, but one of them did not acquire the data due to prolonged discontinuation. The remaining 21 patients, each with 1-7 blood draws, obtained a total of 32 plasma drug concentration data. The drug concentration of icotinib is a range of 126.9-2317.1 ng/mL. Among the 21 patients, 18 cases were female (85.7%), and 3 cases were male (14.3%), with an age range of 44-85 years old. The pathological types are all lung adenocarcinoma. Except for 5 patients receiving postoperative adjuvant therapy, 16 patients had assessable tumors. The objective response rate was 43.8% (7/16), and the disease control rate reached 100.0% (16/16). The median value of drug concentration is 805.5 ng/mL among those 21 patients. Compared with the patients who achieved stable disease, the median value of drug concentrations of Icotinib in patients who achieved partial response were 497.2 and 1195.5 ng/mL, respectively (P=0.017). The median value of drug concentrations for patients who did not experience adverse reactions during treatment and those who experienced adverse reactions were 997.0 and 828.6 ng/mL, respectively (P=0.538).
CONCLUSIONS
Icotinib demonstrates good therapeutic effect and tolerable toxicity on the EGFR gene mutant NSCLC. There is a certain negative correlation between the plasma drug concentration of Icotinib and its efficacy, while there seems no significant correlation with safety.
Humans
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
ErbB Receptors/metabolism*
;
Lung Neoplasms/genetics*
;
Male
;
Female
;
Crown Ethers/blood*
;
Middle Aged
;
Drug Monitoring
;
Aged
;
Quinazolines/blood*
;
Mutation
;
Adult
;
Aged, 80 and over
;
Antineoplastic Agents/blood*
;
Prospective Studies
4.A Case Report of Lung Adenocarcinoma with EGFR G719A Mutation and LMNA-NTRK1 Fusion.
Shiqi SONG ; Yaxian YANG ; Weiquan LUO ; Yueya LIANG ; Qi LI ; Tongxu ZHUO ; Weibin XIONG ; Jian HUANG
Chinese Journal of Lung Cancer 2025;28(1):75-80
Fusion variations of neurotrophic receptor tyrosine kinase (NTRK) are oncogenic drivers in various solid tumors such as breast cancer, salivary gland carcinoma, infant fibrosarcoma, etc. Gene rearrangements involving NTRK1/2/3 lead to constitutive activation of the tropomyosin receptor kinase (TRK) domain, and the expressed fusion proteins drive tumor growth and survival. NTRK fusions are estimated to occur at a frequency of approximately 0.1% to 1% in non-small cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) mutations are prevalent in NSCLC, but the frequency of EGFR G719A mutation is relatively low (about 2%), and EGFR mutations are typically mutually exclusive with NTRK fusion variants. The study presented the first documented case of lung adenocarcinoma harboring both EGFR G719A mutation and LMNA-NTRK1 fusion. A review of the literature was conducted to elucidate the role of NTRK fusion mutations in NSCLC and their relationship with EGFR mutations, aiming to enhance the understanding of NTRK fusion mutations in NSCLC.
.
Humans
;
Adenocarcinoma/genetics*
;
Adenocarcinoma of Lung
;
ErbB Receptors/genetics*
;
Lamin Type A/genetics*
;
Lung Neoplasms/genetics*
;
Mutation
;
Oncogene Proteins, Fusion/genetics*
;
Receptor, trkA/metabolism*
5.ARID1B Gene Deletion Promotes the Proliferation, Migration and Invasion of NSCLC Cells.
Chinese Journal of Lung Cancer 2025;28(3):165-175
BACKGROUND:
Abnormalities of the switch/sucrose nonfermentable (SWI/SNF) chromatin-remodeling complex are closely related to various cancers, and ARID1B (AT-rich interaction domain 1B) is one of the core subunits of the SWI/SNF complex. Mutations or copy number deletions of the ARID1B gene are associated with impaired DNA damage response and altered chromatin accessibility. However, whether ARID1B deficiency affects the proliferation, migration and invasion abilities of non-small cell lung cancer (NSCLC) cells and its molecular mechanisms remain poorly understood. This study aims to reveal the regulatory role of ARID1B gene deletion on the malignant phenotype of NSCLC cells and its molecular mechanism.
METHODS:
Online databases were used to analyze the relationship between ARID1B and the prognosis of patients with lung cancer, and the expression levels of ARID1B in lung cancer tissues. The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat) technology was employed to construct stable ARID1B gene knockout (KO) cell lines. The plate colony formation assay was used to detect cell proliferation, and the Transwell cell migration and invasion assays were used to detect changes in cell migration ability. RNA-Seq was utilized for the expression and enrichment analysis of differentially expressed genes. Western blot (WB) was used to verify the knockout effect of the ARID1B gene and to detect the expression changes of epithelial-mesenchymal transition (EMT) markers and mitogen-activated protein kinases (MAPK) signaling pathway-related proteins. Nude mouse tumor models were constructed and the tumorigenic abilities of control and ARID1B-deficient cells were compared.
RESULTS:
Patients with low ARID1B expression have poor overall survival. ARID1B is differentially expressed in lung cancer and normal tissues, and its expression level being lower in cancer cells. ARID1B-deficient cells had significantly enhanced in vitro proliferation, migration and invasion abilities. In animal experiments, the tumor formation speed of ARID1B gene deficient cells was significantly accelerated. Enrichment analysis of RNA-Seq results revealed that the differentially expressed genes were mainly enriched in MAPK, phosphoinositide 3-kinase-protein kinase B (PI3K/Akt) and other signaling pathways. WB experiments demonstrated that the expressions of E-cadherin, N-cadherin and Vimentin changed in ARID1B gene deficient cells, and the expressions of MAPK and p-MAPK was increased.
CONCLUSIONS
The A549-ARID1B KO and PC9-ARID1B KO cell lines were successfully established. The ARID1B-deficient cell lines demonstrated high migration, invasion and proliferation potential at both in vitro and in vivo biological behavior levels and at the transcriptome sequencing level. The changes in the expression of EMT markers and the activation of the MAPK signaling pathway suggest possible metastasis mechanisms of ARID1B-deficient NSCLC.
Humans
;
Cell Proliferation/genetics*
;
Cell Movement/genetics*
;
Lung Neoplasms/metabolism*
;
Animals
;
Carcinoma, Non-Small-Cell Lung/physiopathology*
;
Transcription Factors/metabolism*
;
Neoplasm Invasiveness
;
Mice
;
DNA-Binding Proteins/metabolism*
;
Gene Deletion
;
Cell Line, Tumor
;
Epithelial-Mesenchymal Transition
;
Mice, Nude
;
Gene Expression Regulation, Neoplastic
6.Research Progress on the Regulation of Third-generation EGFR-TKIs Resistance in Non-small Cell Lung Cancer by Redox Homeostasis.
Ting LUO ; Chen FANG ; Feng QIU
Chinese Journal of Lung Cancer 2025;28(7):521-532
Non-small cell lung cancer (NSCLC) ranks among the most lethal malignancies worldwide. The clinical application of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) have successfully revolutionized the treatment paradigm for EGFR-mutant NSCLC, significantly prolonging progression-free survival and establishing EGFR-TKIs as the standard first-line therapy for advanced lung adenocarcinoma. However, acquired resistance remains a major obstacle to sustained clinical benefit, with mechanisms that are highly heterogeneous. A phenomenon of "oxidative stress compensation" is commonly observed in EGFR-TKIs-resistant cells, where in redox homeostasis, through the precise regulation of reactive oxygen species (ROS) generation and elimination, plays a pivotal role in maintaining the balance between tumor cell proliferation and apoptosis. This review aims to innovatively construct a theoretical framework describing how dynamic redox regulation influences resistance to third-generation EGFR-TKIs. It focuses on the multifaceted roles of ROS in both EGFR-dependent and EGFR-independent resistance mechanisms, and further explores therapeutic strategies that target ROS kinetic thresholds and antioxidant systems. These insights not only propose an innovative "metabolic checkpoint" regulatory pathway to overcome acquired resistance to third-generation EGFR-TKIs, but also lay a molecular foundation for developing the redox biomarker-based dynamic therapeutic decision-making systems, thereby facilitating a shift in NSCLC therapy from single-target inhibition toward multi-dimensional metabolic remodeling in the context of precision medicine.
.
Humans
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
ErbB Receptors/genetics*
;
Drug Resistance, Neoplasm/drug effects*
;
Lung Neoplasms/genetics*
;
Oxidation-Reduction/drug effects*
;
Homeostasis/drug effects*
;
Protein Kinase Inhibitors/therapeutic use*
;
Reactive Oxygen Species/metabolism*
;
Animals
7.A Case of Endometrial Metastasis in Lung Adenocarcinoma after EGFR-TKIs Treatment Failure and Literature Review.
Fangqian SHEN ; Zuling HU ; Hua YANG ; Puyu LIU ; Yuju BAI ; Jianguo ZHOU ; Hu MA
Chinese Journal of Lung Cancer 2025;28(7):551-557
The incidence and mortality rates of lung cancer remain high, making it the leading cause of cancer-related deaths. In women, the predominant histological subtype is lung adenocarcinoma, commonly associated with epidermal growth factor receptor (EGFR) mutations, and EGFR-tyrosine kinase inhibitors (EGFR-TKIs) can significantly improve patient prognosis. Metastasis of primary lung cancer to the endometrium is extremely rare and is often misdiagnosed as a primary reproductive system tumor, and its occurrence indicates poor prognosis. This article reports a case of an advanced lung adenocarcinoma patient with EGFR mutation, who developed abnormal vaginal bleeding after EGFR-TKIs treatment failure, and biopsy confirmed endometrial metastasis. A review of similar cases is also presented.
.
Humans
;
Female
;
ErbB Receptors/metabolism*
;
Endometrial Neoplasms/genetics*
;
Lung Neoplasms/genetics*
;
Protein Kinase Inhibitors/therapeutic use*
;
Adenocarcinoma of Lung/drug therapy*
;
Treatment Failure
;
Middle Aged
;
Adenocarcinoma/genetics*
8.Role and Mechanism of Hyaluronic Acid-modified Milk Exosomes in Reversing Pemetrexed Resistance in Lung Adenocarcinoma Cells.
Chinese Journal of Lung Cancer 2025;28(9):658-666
BACKGROUND:
Lung cancer currently ranks first globally in both incidence and mortality. Pemetrexed (PMX) serves as a first-line treatment for lung adenocarcinoma (LUAD), but the patients often develop drug resistance during therapy. Milk exosome (mEXO) have the advantages of low immunogenicity, high tissue affinity, and low cost, and mEXO itself has anti-tumor effects. Hyaluronan (HA) naturally bind to CD44, a receptor which is highly expressed in LUAD tissues. This study aims to construct hyaluronan-modified milk exosome (HA-mEXO) and preliminarily investigate their molecular mechanisms for reversing PMX resistance through cellular experiments.
METHODS:
Exosomes were extracted from milk using high-speed centrifugation, and HA-mEXO was constructed. PMX-resistant A549 and PC-9 cell lines were treated with mEXO and HA-mEXO, respectively. CCK-8 assays, colony formation assays, Transwell assays, and flow cytometry were performed to evaluate proliferation, colony formation, migration, invasion, and apoptosis phenotypes in the treated resistant cell lines. Finally, transcriptomic sequencing, analysis, and cellular functional recovery experiments were conducted to investigate the mechanism by which HA-mEXO reverses PMX resistance in LUAD cells.
RESULTS:
The expression of CD44 in A549 and PC-9 LUAD drug-resistant cell lines was significantly higher than that in parental cells, and the uptake rate of HA-mEXO by drug-resistant cell lines was significantly higher than that of mEXO. Compared to the mEXO group, HA-mEXO-treated A549 and PC-9 resistant cells exhibited significantly reduced half maximal inhibitory concentration (IC50) values for PMX, markedly diminished clonogenic, migratory, and invasive capabilities, and a significantly increased proportion of apoptotic cells. Western blot analysis revealed that, compared to parental cells, A549 and PC-9 drug-resistant cells exhibited downregulated ZNF516 expression and upregulated ABCC5 expression. Immunofluorescence analysis revealed that HA-mEXO treatment downregulated ABCC5 expression in A549 and PC-9 drug-resistant cells compared to the PBS group, whereas co-treatment with HA-mEXO and ZNF516 knockdown showed no significant change in ABCC5 expression.
CONCLUSIONS
HA-mEXO carrying ZNF516 suppress ABCC5 expression, thereby enhancing the sensitivity of A549 and PC-9 LAUD drug-resistant cells to PMX.
Humans
;
Hyaluronic Acid/chemistry*
;
Drug Resistance, Neoplasm/drug effects*
;
Exosomes/chemistry*
;
Adenocarcinoma of Lung/genetics*
;
Pemetrexed/pharmacology*
;
Animals
;
Lung Neoplasms/pathology*
;
Milk/chemistry*
;
Cell Proliferation/drug effects*
;
Apoptosis/drug effects*
;
Cell Line, Tumor
;
Hyaluronan Receptors/metabolism*
9.PM2.5-induced M2 Polarization and IL-1α Secretion by Tumor-associated Macrophages Promotes Lung Adenocarcinoma Progression.
Bomiao QING ; Xiaolan LI ; Qin RAN ; Guoping LI
Chinese Journal of Lung Cancer 2025;28(9):667-679
BACKGROUND:
Lung adenocarcinoma (LUAD) remains one of the leading causes of cancer morbidity and mortality worldwide, and its initiation and progression are closely associated with the tumor immune microenvironment. Increasing evidence suggests that environmental exposure is a critical factor influencing lung cancer development. Among these factors, fine particulate matter (PM2.5), a major component of air pollution, has been strongly linked to elevated lung cancer risk and unfavorable prognosis. However, the underlying immunoregulatory mechanisms by which PM2.5 drives LUAD progression remain poorly understood. Tumor-associated macrophages (TAMs), especially those polarized toward the M2 phenotype, are key components of the tumor microenvironment and play crucial roles in tumor growth, angiogenesis, and immune evasion. This study aims to investigate the effects of PM2.5 exposure on TAMs and to identify the key pro-tumorigenic factors mediating this process.
METHODS:
A mouse orthotopic lung cancer model under PM2.5 exposure was established to assess lung tumor growth and macrophage phenotypic alterations using in vivo imaging and flow cytometry. A subcutaneous tumor model involving co-inoculated macrophages and tumor cells was used to further verify the effects of PM2.5 on the function of TAMs and tumor malignancy. Combining in vitro experiments, flow cytometry, Western blot, reverse transcription quantitative polymerase chain reaction (RT-qPCR), cell counting kit-8 (CCK-8) assay, colony formation assay, and wound healing assay were employed to evaluate the regulatory effects of PM2.5 on the polarization of bone marrow-derived macrophages (BMDMs) as well as tumor cell proliferation, migration, and colony-forming ability. Transcriptome sequencing integrated with TISIDB (Tumor-immune System Interactions Database) and GEPIA (Gene Expression Profiling Interactive Analysis) databases was performed to identify key cytokines for further functional validation.
RESULTS:
In the mouse orthotopic lung cancer model, PM2.5 exposure significantly promoted tumor growth and increased the proportion of M2-type TAMs (P<0.05). Subcutaneous co-inoculation with PM2.5-treated BMDMs markedly enhanced tumor proliferation and elevated the intratumoral M2-type TAMs. PM2.5-pretreated BMDMs exhibited an immunosuppressive programmed cell death ligand 1 (PD-L1)+/arginase 1 (Arg1)+ phenotype, and their conditioned media significantly promoted proliferation, migration, and colony formation of Lewis lung carcinoma cells (LLC) and B16 melanoma cells (B16) (P<0.05). Transcriptome analysis revealed that PM2.5 substantially altered macrophage gene expression, with IL-1α identified as a key upregulated secreted cytokine enriched in immunosuppressive related signaling pathways. Clinical database analyses further indicated that IL-1α expression was positively correlated with macrophage and regulatory T cells (Treg) infiltration in the LUAD immune microenvironment, and that high IL-1α expression was associated with worse overall survival in LUAD patients (HR=1.5, P=0.0053). Western blot, RT-qPCR, and immunofluorescence confirmed that PM2.5 exposure significantly upregulated IL-1α expression and secretion in TAMs.
CONCLUSIONS
PM2.5 exposure facilitates LUAD progression by inducing an immunosuppressive phenotype in macrophages and enhancing the malignant behaviors of tumor cells. Mechanistically, IL-1α may serve as a key pro-tumorigenic cytokine secreted by macrophages under PM2.5 exposure. This study provides new insights into the pathogenesis of PM2.5-associated LUAD and suggests that IL-1α could serve as a potential therapeutic target.
Animals
;
Mice
;
Tumor-Associated Macrophages/immunology*
;
Particulate Matter/toxicity*
;
Adenocarcinoma of Lung/metabolism*
;
Lung Neoplasms/genetics*
;
Humans
;
Disease Progression
;
Tumor Microenvironment/drug effects*
;
Cell Proliferation/drug effects*
;
Cell Line, Tumor
10.LncRNA SNHG15 promotes proliferation, migration and invasion of lung adenocarcinoma cells by regulating COX6B1 through sponge adsorption of miR-30b-3p.
Xiuying GONG ; Shunfu HOU ; Miaomiao ZHAO ; Xiaona WANG ; Zhihan ZHANG ; Qinghua LIU ; Chonggao YIN ; Hongli LI
Journal of Southern Medical University 2025;45(7):1498-1505
OBJECTIVES:
To explore the molecular mechanism by which lncRNA SNHG15 regulates proliferation, invasion and migration of lung adenocarcinoma cells.
METHODS:
The lncRNA microarray chip dataset GSE196584 and LncBase were used to predict the lncRNAs that interact with miR-30b-3p, and their association with patient prognosis were investigated using online databases, after which lncRNA nucleolar RNA host gene 15 (SNHG15) was selected for further analysis. The subcellular localization of lncRNA SNHG15 and its expression levels in normal human lung epithelial cells and lung adenocarcinoma cell lines were detected using fluorescence in situ hybridization and qRT-PCR. In cultured A549 cells, the changes in cell proliferation, migration, and invasion following transfection with a SNHG15 knockdown plasmid (sh-SNHG15), a miR-30b-3p inhibitor, or their co-transfection were assessed with EdU, wound healing, and Transwell assays. Bioinformatics analyses were used to predict the regulatory relationship between lncRNA SNHG15 and COX6B1, and the results were verified using Western blotting and rescue experiments in A549 cells transfected with sh-SNHG15, a COX6B1-overexpressing plasmid, or both.
RESULTS:
LncRNA SNHG15 was shown to target miR-30b-3p, and the former was highly expressed in lung adenocarcinoma, and associated with a poor patient prognosis. LncRNA SNHG15 was localized in the cytoplasm and expressed at higher levels in A549 and NCI-H1299 cells than in BEAS-2B cells. In A549 cells, lncRNA SNHG15 knockdown significantly inhibited cell migration, invasion and proliferation, and these changes were reversed by miR-30b-3p inhibitor. A regulatory relationship was found between lncRNA SNHG15 and COX6B1, and their expression levels were positively correlated (r=0.128, P=0.003). MiR-30b-3p knockdown obviously decreased COX6B1 expression in A549 cells, and COX6B1 overexpression rescued the cells from the inhibitory effects of lncRNA-SNHG15 knockdown.
CONCLUSIONS
LncRNA SNHG15 may compete with COX6B1 to bind miR-30b-3p through a ceRNA mechanism to affect proliferation, migration, and invasion of lung adenocarcinoma cells.
Humans
;
MicroRNAs/metabolism*
;
RNA, Long Noncoding/genetics*
;
Cell Proliferation
;
Cell Movement
;
Lung Neoplasms/genetics*
;
Adenocarcinoma of Lung
;
Neoplasm Invasiveness
;
A549 Cells
;
Adenocarcinoma/genetics*
;
Gene Expression Regulation, Neoplastic
;
Cell Line, Tumor

Result Analysis
Print
Save
E-mail