1.Accuracy of baseline low-dose computed tomography lung cancer screening: a systematic review and meta-analysis.
Lanwei GUO ; Yue YU ; Funa YANG ; Wendong GAO ; Yu WANG ; Yao XIAO ; Jia DU ; Jinhui TIAN ; Haiyan YANG
Chinese Medical Journal 2023;136(9):1047-1056
BACKGROUND:
Screening using low-dose computed tomography (LDCT) is a more effective approach and has the potential to detect lung cancer more accurately. We aimed to conduct a meta-analysis to estimate the accuracy of population-based screening studies primarily assessing baseline LDCT screening for lung cancer.
METHODS:
MEDLINE, Excerpta Medica Database, and Web of Science were searched for articles published up to April 10, 2022. According to the inclusion and exclusion criteria, the data of true positives, false-positives, false negatives, and true negatives in the screening test were extracted. Quality Assessment of Diagnostic Accuracy Studies-2 was used to evaluate the quality of the literature. A bivariate random effects model was used to estimate pooled sensitivity and specificity. The area under the curve (AUC) was calculated by using hierarchical summary receiver-operating characteristics analysis. Heterogeneity between studies was measured using the Higgins I2 statistic, and publication bias was evaluated using a Deeks' funnel plot and linear regression test.
RESULTS:
A total of 49 studies with 157,762 individuals were identified for the final qualitative synthesis; most of them were from Europe and America (38 studies), ten were from Asia, and one was from Oceania. The recruitment period was 1992 to 2018, and most of the subjects were 40 to 75 years old. The analysis showed that the AUC of lung cancer screening by LDCT was 0.98 (95% CI: 0.96-0.99), and the overall sensitivity and specificity were 0.97 (95% CI: 0.94-0.98) and 0.87 (95% CI: 0.82-0.91), respectively. The funnel plot and test results showed that there was no significant publication bias among the included studies.
CONCLUSIONS
Baseline LDCT has high sensitivity and specificity as a screening technique for lung cancer. However, long-term follow-up of the whole study population (including those with a negative baseline screening result) should be performed to enhance the accuracy of LDCT screening.
Humans
;
Adult
;
Middle Aged
;
Aged
;
Lung Neoplasms/diagnostic imaging*
;
Early Detection of Cancer
;
Sensitivity and Specificity
;
Mass Screening
;
Tomography, X-Ray Computed
2.Novel Pulmonary Nodule Position Detection Method Based on Multiscale Convolution.
Mengmeng WU ; Qiuchen DU ; Yi GUO
Chinese Journal of Medical Instrumentation 2023;47(4):402-405
OBJECTIVE:
In order to improve the accuracy of the current pulmonary nodule location detection method based on CT images, reduce the problem of missed detection or false detection, and effectively assist imaging doctors in the diagnosis of pulmonary nodules.
METHODS:
Propose a novel method for detecting the location of pulmonary nodules based on multiscale convolution. First, image preprocessing methods are used to eliminate the noise and artifacts in lung CT images. Second, multiple adjacent single-frame CT images are selected to be concatenate into multi-frame images, and the feature extraction is carried out through the artificial neural network model U-Net improved by multi-scale convolution to enhanced feature extraction capability for pulmonary nodules of different sizes and shapes, so as to improve the accuracy of feature extraction of pulmonary nodules. Finally, using point detection to improve the loss function of U-Net training process, the accuracy of pulmonary nodule location detection is improved.
RESULTS:
The accuracy of detecting pulmonary nodules equal or larger than 3 mm and smaller than 3 mm are 98.02% and 96.94% respectively.
CONCLUSIONS
This method can effectively improve the detection accuracy of pulmonary nodules on CT image sequence, and can better meet the diagnostic needs of pulmonary nodules.
Humans
;
Lung Neoplasms/diagnostic imaging*
;
Solitary Pulmonary Nodule/diagnostic imaging*
;
Tomography, X-Ray Computed
;
Neural Networks, Computer
3.Research Progress in Imaging-based Diagnosis of Benign and Malignant Enlarged Lymph Nodes in Non-small Cell Lung Cancer.
Chinese Journal of Lung Cancer 2023;26(1):31-37
Non-small cell lung cancer (NSCLC) can be detected with enlarged lymph nodes on imaging, but their benignity and malignancy are difficult to determine directly, making it difficult to stage the tumor and design radiotherapy target volumes. The clinical diagnosis of malignant lymph nodes is often based on the short diameter of lymph nodes ≥1 cm or the maximum standard uptake value ≥2.5, but the sensitivity and specificity of these criteria are too low to meet the clinical needs. In recent years, many advances have been made in diagnosing benign and malignant lymph nodes using other imaging parameters, and with the development of radiomics, deep learning and other technologies, models of mining the image information of enlarged lymph node regions further improve the diagnostic accuracy. The purpose of this paper is to review recent advances in imaging-based diagnosis of benign and malignant enlarged lymph nodes in NSCLC for more accurate and noninvasive assessment of lymph node status in clinical practice.
.
Humans
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Diagnostic Imaging
;
Lung Neoplasms/pathology*
;
Lymph Nodes/pathology*
;
Sensitivity and Specificity
4.The performance of digital chest radiographs in the detection and diagnosis of pulmonary nodules and the consistency among readers.
Min LIANG ; Shi Jun ZHAO ; Li Na ZHOU ; Xiao Juan XU ; Ya Wen WANG ; Lin NIU ; Hui Hui WANG ; Wei TANG ; Ning WU
Chinese Journal of Oncology 2023;45(3):265-272
Objective: To investigate the detection and diagnostic efficacy of chest radiographs for ≤30 mm pulmonary nodules and the factors affecting them, and to compare the level of consistency among readers. Methods: A total of 43 patients with asymptomatic pulmonary nodules who consulted in Cancer Hospital, Chinese Academy of Medical Sciences from 2012 to 2014 and had chest CT and X-ray chest radiographs during the same period were retrospectively selected, and one nodule ≤30 mm was visible on chest CT images in the whole group (total 43 nodules in the whole group). One senior radiologist with more than 20 years of experience in imaging diagnosis reviewed CT images and recording the size, morphology, location, and density of nodules was selected retrospectively. Six radiologists with different levels of experience (2 residents, 2 attending physicians and 2 associate chief physicians independently reviewed the chest images and recorded the time of review, nodule detection, and diagnostic opinion. The CT imaging characteristics of detected and undetected nodules on X images were compared, and the factors affecting the detection of nodules on X-ray images were analyzed. Detection sensitivity and diagnosis accuracy rate of 6 radiologists were calculated, and the level of consistency among them was compared to analyze the influence of radiologists' seniority and reading time on the diagnosis results. Results: The number of nodules detected by all 6 radiologists was 17, with a sensitivity of detection of 39.5%(17/43). The number of nodules detected by ≥5, ≥4, ≥3, ≥2, and ≥1 physicians was 20, 21, 23, 25, and 28 nodules, respectively, with detection sensitivities of 46.5%, 48.8%, 53.5%, 58.1%, and 65.1%, respectively. Reasons for false-negative result of detection on X-ray images included the size, location, density, and morphology of the nodule. The sensitivity of detecting ≤30 mm, ≤20 mm, ≤15 mm, and ≤10 mm nodules was 46.5%-58.1%, 45.9%-54.1%, 36.0%-44.0%, and 36.4% for the 6 radiologists, respectively; the diagnosis accuracy rate was 19.0%-85.0%, 16.7%-6.5%, 18.2%-80.0%, and 0%-75.0%, respectively. The consistency of nodule detection among 6 doctors was good (Kappa value: 0.629-0.907) and the consistency of diagnostic results among them was moderate or poor (Kappa value: 0.350-0.653). The higher the radiologist's seniority, the shorter the time required to read the images. The reading time and the seniority of the radiologists had no significant influence on the detection and diagnosis results (P>0.05). Conclusions: The ability of radiographs to detect lung nodules ≤30 mm is limited, and the ability to determine the nature of the nodules is not sufficient, and the increase in reading time and seniority of the radiologists will not improve the diagnostic accuracy. X-ray film exam alone is not suitable for lung cancer diagnosis.
Humans
;
Retrospective Studies
;
Solitary Pulmonary Nodule/diagnostic imaging*
;
Radiography
;
Multiple Pulmonary Nodules/diagnostic imaging*
;
Tomography, X-Ray Computed/methods*
;
Lung Neoplasms/diagnostic imaging*
;
Sensitivity and Specificity
;
Radiographic Image Interpretation, Computer-Assisted/methods*
5.Research progress on the identification of central lung cancer and atelectasis using multimodal imaging.
Tianye LIU ; Jian ZHU ; Baosheng LI
Journal of Biomedical Engineering 2023;40(6):1255-1260
Central lung cancer is a common disease in clinic which usually occurs above the segmental bronchus. It is commonly accompanied by bronchial stenosis or obstruction, which can easily lead to atelectasis. Accurately distinguishing lung cancer from atelectasis is important for tumor staging, delineating the radiotherapy target area, and evaluating treatment efficacy. This article reviews domestic and foreign literatures on how to define the boundary between central lung cancer and atelectasis based on multimodal images, aiming to summarize the experiences and propose the prospects.
Humans
;
Lung Neoplasms/diagnostic imaging*
;
Pulmonary Atelectasis/complications*
;
Bronchi
;
Constriction, Pathologic/complications*
;
Multimodal Imaging
6.Progress in Image-planned and Real-time Image-guided Lung Cancer Biopsy in the Detection of Biomarkers.
Gengshen BAI ; Bingyin ZHU ; Jun MA ; Yongchun LI ; Gang HUANG ; Yaqiong MA
Chinese Journal of Lung Cancer 2023;26(8):630-638
With the progress of targeted therapy and immunotherapy for lung cancer, the clinical demand for lung biopsy is increasing. An ideal biopsy specimen can be used not only for histopathological diagnosis, but also for biomarker detection. The ideal biopsy specimen should meet two requirements, including more than 60 mm2 of tumor tissue and containing more than 20% of tumor cells. In order to obtain ideal lung cancer biopsy specimens, advanced imaging techniques are needed to help. In this article, we reviewed the requirements for biopsy specimens based on biomarker detection, as well as the current status and research progress of using imaging techniques for preoperative planning and intraoperative real time guidance of lung cancer biopsy.
.
Humans
;
Lung Neoplasms/diagnostic imaging*
;
Biopsy
;
Biomarkers
;
Immunotherapy
7.Diagnostic values of conventional tumor markers and their combination with chest CT for patients with stageⅠA lung cancer.
Qin PENG ; Ning WU ; Yao HUANG ; Shi Jun ZHAO ; Wei TANG ; Min LIANG ; Yu Liang RAN ; Ting XIAO ; Lin YANG ; Xin LIANG
Chinese Journal of Oncology 2023;45(11):934-941
Objective: To investigate the diagnostic efficiency of conventional serum tumor markers and their combination with chest CT for stage ⅠA lung cancer. Methods: A total of 1 155 patients with stage ⅠA lung cancer and 200 patients with benign lung lesions (confirmed by surgery) treated at the Cancer Hospital, Chinese Academy of Medical Sciences from January 2016 to October 2020 were retrospectively enrolled in this study. Six conventional serum tumor markers [carcinoembryonic antigen (CEA), carbohydrate antigen 125 (CA125), squamous cell carcinoma associated antigen (SCCA), cytokeratin 19 fragment (CYFRA21-1), neuron-specific enolase (NSE), and gastrin-releasing peptide precursor (ProGRP)] and chest thin-slice CT were performed on all patients one month before surgery. Pathology was taken as the gold standard to analyze the difference of positivity rates of tumor markers between the lung cancer group and the benign group, the moderate/poor differentiation group and the well differentiation group, the adenocarcinoma group and the squamous cell carcinoma group, the lepidic and non-lepidic predominant adenocarcinoma groups, the solid nodule group and the subsolid nodule group based on thin-slice CT, and subgroups of ⅠA1 to ⅠA3 lung cancers. The diagnostic performance of tumor markers and tumor markers combined with chest CT was analyzed using the receiver operating characteristic curve. Results: The positivity rates of six serum tumor markers in the lung cancer group and the benign group were 2.32%-20.08% and 0-13.64%, respectively; only the SCCA positivity rate in the lung cancer group was higher than that in the benign group (10.81% and 0, P=0.022). There were no significant differences in the positivity rates of other serum tumor markers between the two groups (all P>0.05). The combined detection of six tumor markers showed that the positivity rate of the lung cancer group was higher than that of the benign group (40.93% and 18.18%, P=0.004), and the positivity rate of the adenocarcinoma group was lower than that of the squamous cell carcinoma group (35.66% and 47.41%, P=0.045). The positivity rates in the poorly differentiated group and moderately differentiated group were higher than that in the well differentiated group (46.48%, 43.75% and 22.73%, P=0.025). The positivity rate in the non-lepidic adenocarcinoma group was higher than that in lepidic adenocarcinoma group (39.51% and 21.74%, P=0.001). The positivity rate of subsolid nodules was lower than that of solid nodules (30.01% vs 58.71%, P=0.038), and the positivity rates of stageⅠA1, ⅠA2 and ⅠA3 lung cancers were 33.33%, 48.96% and 69.23%, respectively, showing an increasing trend (P=0.005). The sensitivity and specificity of the combined detection of six tumor markers in the diagnosis of stage ⅠA lung cancer were 74.00% and 56.30%, respectively, and the area under the curve (AUC) was 0.541. The sensitivity and specificity of the combined detection of six serum tumor markers with CT in the diagnosis of stage ⅠA lung cancer were 83.0% and 78.3%, respectively, and the AUC was 0.721. Conclusions: For stage ⅠA lung cancer, the positivity rates of commonly used clinical tumor markers are generally low. The combined detection of six markers can increase the positivity rate. The positivity rate of markers tends to be higher in poorly differentiated lung cancer, squamous cell carcinoma, or solid nodules. Tumor markers combined with thin-slice CT showed limited improvement in diagnostic efficiency for early lung cancer.
Humans
;
Lung Neoplasms/diagnostic imaging*
;
Biomarkers, Tumor
;
Retrospective Studies
;
Antigens, Neoplasm
;
Keratin-19
;
Carcinoembryonic Antigen
;
Adenocarcinoma/diagnostic imaging*
;
Carcinoma, Squamous Cell/diagnostic imaging*
;
Phosphopyruvate Hydratase
;
Tomography, X-Ray Computed
8.Diagnostic values of conventional tumor markers and their combination with chest CT for patients with stageⅠA lung cancer.
Qin PENG ; Ning WU ; Yao HUANG ; Shi Jun ZHAO ; Wei TANG ; Min LIANG ; Yu Liang RAN ; Ting XIAO ; Lin YANG ; Xin LIANG
Chinese Journal of Oncology 2023;45(11):934-941
Objective: To investigate the diagnostic efficiency of conventional serum tumor markers and their combination with chest CT for stage ⅠA lung cancer. Methods: A total of 1 155 patients with stage ⅠA lung cancer and 200 patients with benign lung lesions (confirmed by surgery) treated at the Cancer Hospital, Chinese Academy of Medical Sciences from January 2016 to October 2020 were retrospectively enrolled in this study. Six conventional serum tumor markers [carcinoembryonic antigen (CEA), carbohydrate antigen 125 (CA125), squamous cell carcinoma associated antigen (SCCA), cytokeratin 19 fragment (CYFRA21-1), neuron-specific enolase (NSE), and gastrin-releasing peptide precursor (ProGRP)] and chest thin-slice CT were performed on all patients one month before surgery. Pathology was taken as the gold standard to analyze the difference of positivity rates of tumor markers between the lung cancer group and the benign group, the moderate/poor differentiation group and the well differentiation group, the adenocarcinoma group and the squamous cell carcinoma group, the lepidic and non-lepidic predominant adenocarcinoma groups, the solid nodule group and the subsolid nodule group based on thin-slice CT, and subgroups of ⅠA1 to ⅠA3 lung cancers. The diagnostic performance of tumor markers and tumor markers combined with chest CT was analyzed using the receiver operating characteristic curve. Results: The positivity rates of six serum tumor markers in the lung cancer group and the benign group were 2.32%-20.08% and 0-13.64%, respectively; only the SCCA positivity rate in the lung cancer group was higher than that in the benign group (10.81% and 0, P=0.022). There were no significant differences in the positivity rates of other serum tumor markers between the two groups (all P>0.05). The combined detection of six tumor markers showed that the positivity rate of the lung cancer group was higher than that of the benign group (40.93% and 18.18%, P=0.004), and the positivity rate of the adenocarcinoma group was lower than that of the squamous cell carcinoma group (35.66% and 47.41%, P=0.045). The positivity rates in the poorly differentiated group and moderately differentiated group were higher than that in the well differentiated group (46.48%, 43.75% and 22.73%, P=0.025). The positivity rate in the non-lepidic adenocarcinoma group was higher than that in lepidic adenocarcinoma group (39.51% and 21.74%, P=0.001). The positivity rate of subsolid nodules was lower than that of solid nodules (30.01% vs 58.71%, P=0.038), and the positivity rates of stageⅠA1, ⅠA2 and ⅠA3 lung cancers were 33.33%, 48.96% and 69.23%, respectively, showing an increasing trend (P=0.005). The sensitivity and specificity of the combined detection of six tumor markers in the diagnosis of stage ⅠA lung cancer were 74.00% and 56.30%, respectively, and the area under the curve (AUC) was 0.541. The sensitivity and specificity of the combined detection of six serum tumor markers with CT in the diagnosis of stage ⅠA lung cancer were 83.0% and 78.3%, respectively, and the AUC was 0.721. Conclusions: For stage ⅠA lung cancer, the positivity rates of commonly used clinical tumor markers are generally low. The combined detection of six markers can increase the positivity rate. The positivity rate of markers tends to be higher in poorly differentiated lung cancer, squamous cell carcinoma, or solid nodules. Tumor markers combined with thin-slice CT showed limited improvement in diagnostic efficiency for early lung cancer.
Humans
;
Lung Neoplasms/diagnostic imaging*
;
Biomarkers, Tumor
;
Retrospective Studies
;
Antigens, Neoplasm
;
Keratin-19
;
Carcinoembryonic Antigen
;
Adenocarcinoma/diagnostic imaging*
;
Carcinoma, Squamous Cell/diagnostic imaging*
;
Phosphopyruvate Hydratase
;
Tomography, X-Ray Computed
10.Comparison of Two-dimensional and Three-dimensional Features of Chest CT in the Diagnosis of Invasion of Pulmonary Ground Glass Nodules.
Hongya WANG ; He YANG ; Zicheng LIU ; Liang CHEN ; Xinfeng XU ; Quan ZHU
Chinese Journal of Lung Cancer 2022;25(10):723-729
BACKGROUND:
At present, more and more studies predict invasive adenocarcinoma (IAC) through three-dimensional features of pulmonary nodules, but few studies have confirmed that three-dimensional features have more advantages in diagnosing IAC than traditional two-dimensional features of pulmonary nodules. This study analyzed the differences of chest computed tomography (CT) features between IAC and minimally invasive adenocarcinoma (MIA) from three-dimensional and two-dimensional levels, and compared the ability of diagnosing IAC. The non-invasive adenocarcinoma group includes precursor glandular lesions (PGL) and minimally invasive adenocarcinoma (MIA).
METHODS:
The clinical data of 1,045 patients with ground glass opacity (GGO) from January to December 2019 were collected. Then the correlation between preoperative CT image characteristics and pathological results were analyzed retrospectively. The independent influencing factors for the identification of IAC were screened out according to two-dimensional and three-dimensional classification by multivariate Logistic regression and the cut-off point for the identification of IAC was found out through the receiver operating characteristic (ROC) curve. At last, the ability of diagnosing IAC was evaluated by Yoden index.
RESULTS:
The diameter of nodule, the diameter of solid component, the diameter of mediastinal window nodule in two-dimensional factors, and the volume of nodule, the volume of solid part and the average CT value in three-dimensional factors were independent risk factors for the diagnosis of IAC. These factors were arranged by Yoden index: solid partial volume (0.601)>nodule volume (0.536)>solid component diameter (0.525)>nodule diameter (0.518)>mediastinal window nodule diameter (0.488)>proportion of solid component volume (0.471)>1-tumor disappearance ratio (TDR) (0.468)>consolidation tumor ratio (CTR) (0.394)>average CT value (0.380).
CONCLUSIONS
The CT features of three-dimensional are better than two-dimensional in the diagnosis of IAC, and the size of solid components is better than the overall size of nodules.
Humans
;
Lung Neoplasms/pathology*
;
Retrospective Studies
;
Neoplasm Invasiveness
;
Multiple Pulmonary Nodules/diagnostic imaging*
;
Adenocarcinoma/pathology*

Result Analysis
Print
Save
E-mail