1.Cancer therapy-related interstitial lung disease.
Chengzhi ZHOU ; Haiyi DENG ; Yilin YANG ; Fei WANG ; Xinqing LIN ; Ming LIU ; Xiaohong XIE ; Tao LUAN ; Nanshan ZHONG
Chinese Medical Journal 2025;138(3):264-277
With the increasing utilization of cancer therapy, the incidence of lung injury associated with these treatments continues to rise. The recognition of pulmonary toxicity related to cancer therapy has become increasingly critical, for which interstitial lung disease (ILD) is a common cause of mortality. Cancer therapy-related ILD (CT-ILD) can result from a variety of treatments including chemotherapy, targeted therapy, immune checkpoint inhibitors, antibody-drug conjugates, and radiotherapy. CT-ILD may progress rapidly and even be life-threatening; therefore, prompt diagnosis and timely treatment are crucial for effective management. This review aims to provide valuable information on the risk factors associated with CT-ILD; elucidate its underlying mechanisms; discuss its clinical features, imaging, and histological manifestations; and emphasize the clinical-related views of its diagnosis. In addition, this review provides an overview of grading, typing, and staging treatment strategies used for the management of CT-ILD.
Humans
;
Lung Diseases, Interstitial/diagnosis*
;
Neoplasms/therapy*
;
Risk Factors
;
Immune Checkpoint Inhibitors/adverse effects*
;
Antineoplastic Agents/therapeutic use*
2.Development and multicenter validation of machine learning models for predicting postoperative pulmonary complications after neurosurgery.
Ming XU ; Wenhao ZHU ; Siyu HOU ; Hongzhi XU ; Jingwen XIA ; Liyu LIN ; Hao FU ; Mingyu YOU ; Jiafeng WANG ; Zhi XIE ; Xiaohong WEN ; Yingwei WANG
Chinese Medical Journal 2025;138(17):2170-2179
BACKGROUND:
Postoperative pulmonary complications (PPCs) are major adverse events in neurosurgical patients. This study aimed to develop and validate machine learning models predicting PPCs after neurosurgery.
METHODS:
PPCs were defined according to the European Perioperative Clinical Outcome standards as occurring within 7 postoperative days. Data of cases meeting inclusion/exclusion criteria were extracted from the anesthesia information management system to create three datasets: The development (data of Huashan Hospital, Fudan University from 2018 to 2020), temporal validation (data of Huashan Hospital, Fudan University in 2021) and external validation (data of other three hospitals in 2023) datasets. Machine learning models of six algorithms were trained using either 35 retrievable and plausible features or the 11 features selected by Lasso regression. Temporal validation was conducted for all models and the 11-feature models were also externally validated. Independent risk factors were identified and feature importance in top models was analyzed.
RESULTS:
PPCs occurred in 712 of 7533 (9.5%), 258 of 2824 (9.1%), and 207 of 2300 (9.0%) patients in the development, temporal validation and external validation datasets, respectively. During cross-validation training, all models except Bayes demonstrated good discrimination with an area under the receiver operating characteristic curve (AUC) of 0.840. In temporal validation of full-feature models, deep neural network (DNN) performed the best with an AUC of 0.835 (95% confidence interval [CI]: 0.805-0.858) and a Brier score of 0.069, followed by Logistic regression (LR), random forest and XGBoost. The 11-feature models performed comparable to full-feature models with very close but statistically significantly lower AUCs, with the top models of DNN and LR in temporal and external validations. An 11-feature nomogram was drawn based on the LR algorithm and it outperformed the minimally modified Assess respiratory RIsk in Surgical patients in CATalonia (ARISCAT) and Laparoscopic Surgery Video Educational Guidelines (LAS VEGAS) scores with a higher AUC (LR: 0.824, ARISCAT: 0.672, LAS: 0.663). Independent risk factors based on multivariate LR mostly overlapped with Lasso-selected features, but lacked consistency with the important features using the Shapley additive explanation (SHAP) method of the LR model.
CONCLUSIONS:
The developed models, especially the DNN model and the nomogram, had good discrimination and calibration, and could be used for predicting PPCs in neurosurgical patients. The establishment of machine learning models and the ascertainment of risk factors might assist clinical decision support for improving surgical outcomes.
TRIAL REGISTRATION
ChiCTR 2100047474; https://www.chictr.org.cn/showproj.html?proj=128279 .
Adult
;
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Algorithms
;
Lung Diseases/etiology*
;
Machine Learning
;
Neurosurgical Procedures/adverse effects*
;
Postoperative Complications/diagnosis*
;
Risk Factors
;
ROC Curve
3.Common characteristics and regulatory mechanisms of airway mucus hypersecretion in lung disease.
Ze-Qiang LIN ; Shi-Man PANG ; Si-Yuan ZHU ; Li-Xia HE ; Wei-Guo KONG ; Wen-Ju LU ; Zi-Li ZHANG
Acta Physiologica Sinica 2025;77(5):989-1000
In a healthy human, the airway mucus forms a thin, protective liquid layer covering the surface of the respiratory tract. It comprises a complex blend of mucin, multiple antibacterial proteins, metabolic substances, water, and electrolytes. This mucus plays a pivotal role in the lungs' innate immune system by maintaining airway hydration and capturing airborne particles and pathogens. However, heightened mucus secretion in the airway can compromise ciliary clearance, obstruct the respiratory tract, and increase the risk of pathogen colonization and recurrent infections. Consequently, a thorough exploration of the mechanisms driving excessive airway mucus secretion is crucial for establishing a theoretical foundation for the eventual development of targeted drugs designed to reduce mucus production. Across a range of lung diseases, excessive airway mucus secretion manifests with unique characteristics and regulatory mechanisms, all intricately linked to mucin. This article provides a comprehensive overview of the characteristics and regulatory mechanisms associated with excessive airway mucus secretion in several prevalent lung diseases.
Humans
;
Mucus/metabolism*
;
Mucins/physiology*
;
Lung Diseases/metabolism*
;
Respiratory Mucosa/metabolism*
;
Pulmonary Disease, Chronic Obstructive/physiopathology*
;
Asthma/physiopathology*
;
Cystic Fibrosis/physiopathology*
;
Mucociliary Clearance/physiology*
4.Application of electrical impedance tomography in diagnosis and monitoring of pulmonary diseases.
Xiaomin HU ; Shuaifu ZHANG ; Panfeng CHEN ; Feng DONG ; Haojun FAN ; Qi LYU ; Yanbin XU
Journal of Biomedical Engineering 2025;42(2):389-395
Electrical impedance tomography (EIT) is a new non-invasive functional imaging technology, which has the advantages of non-invasion, non-radiation, low cost, fast response, portability and visualization. In recent years, more and more studies have shown that EIT has great potential in the detection of lung diseases and has been applied to early diagnosis and treatment of some diseases. This paper introduced the basic principle of EIT, discussed the research and clinical application of EIT in the detection of acute respiratory distress syndrome, chronic obstructive pulmonary disease, pneumothorax and pulmonary embolism, and focused on the summary and introduction of indicators and functional images of EIT related to the detection of lung diseases. This review will help medical workers understand and use EIT, and promote the further development of EIT in lung diseases as well as other fields.
Humans
;
Electric Impedance
;
Tomography/methods*
;
Lung Diseases/diagnosis*
;
Pulmonary Disease, Chronic Obstructive/diagnosis*
;
Pulmonary Embolism/diagnosis*
;
Respiratory Distress Syndrome/diagnosis*
5.Advances in the study of exosomes derived from mesenchymal stem cells in the treatment of pulmonary diseases.
Tao MA ; Linzhi YUE ; Yumei DAI ; Wenya DU ; Lixian WU
Chinese Journal of Cellular and Molecular Immunology 2025;41(3):278-282
Pulmonary diseases, as a prevalent category of respiratory system disorders, have become a significant global public health concern. The increasing incidence of these diseases, caused by environmental pollution and occupational hazards, poses a substantial threat to human health and the overall quality of life. Mesenchymal stem cells (MSCs) are known for their remarkable immunomodulatory, anti-bacterial, and anti-apoptotic capabilities. Exosomes derived from MSCs, carrying a diverse array of proteins, lipids, nucleic acids, and other bio-active molecules, have demonstrated considerable therapeutic potential in treating pulmonary diseases, and have come to the forefront of medical research. This review summarized the therapeutic role of exosomes derived from various sources of mesenchymal stem cells in the context of pulmonary diseases, aiming to provide a robust foundation for their clinical application in diagnosis and treatment.
Exosomes/transplantation*
;
Humans
;
Mesenchymal Stem Cells/metabolism*
;
Lung Diseases/therapy*
;
Animals
6.The regulatory function of elevated interleukin 36γ to CD8+ T cell function in secondary fungal pneumonia patients with chronic obstructive pulmonary diseases.
Xiaoshan CUI ; Yinglan LI ; Tongxiu ZHAO
Chinese Journal of Cellular and Molecular Immunology 2025;41(7):637-643
Objectives To investigate interleukin 36γ (IL-36γ) expression, and analyze the influence of IL-36γ to CD8+ T cell activity in chronic obstructive pulmonary diseases (COPD) patients with secondary fungal pneumonia. Methods Peripheral blood was collected from 47 COPD patients, 39 COPD patients with secondary fungal pneumonia, and 20 controls. Bronchial alveolar lavage fluid (BALF) was isolated from 27 COPD patients with secondary fungal pneumonia. CD8+ T cells were purified. The levels of four IL-36 isoforms in plasma and BALF were measured by enzyme linked immunosorbent assay (ELISA). CD8+ T cells were stimulated with recombinant human IL-36γ. The levels of interferon γ(IFN-γ), tumor necrosis factor α(TNF-α), perforin and granzyme B in the cultured supernatants were measured by ELISA. Recombinant human IL-36γ-stimulated CD8+ T cells were co-cultured with NCI-H1882 cells in either direct cell-to-cell contact or TranswellTM manner. The levels of IFN-γ, TNF-α, and lactate dehydrogenase in the cultured supernatants were assessed. The percentage of target cell death was calculated. Results Plasma IL-36α, IL-36β, and IL-36γ levels were significantly elevated in both COPD group and COPD with secondary fungal pneumonia group compared with those in control group. However, only plasma IL-36γ level was higher in COPD with secondary fungal pneumonia group than that in COPD group [(200.11±99.95)pg/mL vs (53.03±87.18)pg/mL, P=0.023]. There was no remarkable difference in plasma IL-36 receptor antagonist level among three groups. IL-36γ level in BALF from infectious site was higher than that from non-infectious site in COPD with secondary fungal pneumonia group [(305.82±59.60)pg/mL vs (251.93±76.01)pg/mL, P=0.011]. IL-36γ stimulation enhanced IFN-γ, TNF-α, perforin and granzyme B secreted by CD8+ T cells. When IL-36γ-stimulated CD8+ T cells were directly mixed with NCI-H1882 cells for co-culture, the percentage of cell death was increased [(16.06±3.67)% vs (11.47±2.36)%, P=0.002]. When using TranswellTM plate for non-contact co-culture, IL-36γ-stimulated CD8+ T cell-mediated death of NCI-H1882 cells showed no significant difference compared to that without stimulation [(4.77±0.78)% vs (4.99±0.92)%, P=0.554]. Conclusion IL-36γ level in plasma and infectious site is elevated in COPD patients with secondary fungal pneumonia, which enhances the cytotoxicity of CD8+ T cells in peripheral blood and infectious microenviroment.
Humans
;
Pulmonary Disease, Chronic Obstructive/complications*
;
CD8-Positive T-Lymphocytes/metabolism*
;
Male
;
Female
;
Aged
;
Middle Aged
;
Interferon-gamma/metabolism*
;
Interleukin-1/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Lung Diseases, Fungal/complications*
;
Bronchoalveolar Lavage Fluid/chemistry*
;
Perforin/metabolism*
;
Pneumonia/immunology*
;
Granzymes/metabolism*
7.Risk factors for cardiopulmonary dysfunction after ligation of hemodynamically significant patent ductus arteriosus in preterm infants.
Chong-Chong LIU ; Yong LIU ; Yi ZHANG ; Dai-Cheng HAN ; Rui-Jing HE ; Shi-Wen XIA
Chinese Journal of Contemporary Pediatrics 2025;27(4):425-431
OBJECTIVES:
To investigate the risk factors for the occurrence of cardiopulmonary dysfunction following ligation of hemodynamically significant patent ductus arteriosus (hsPDA) in preterm infants.
METHODS:
A retrospective collection of clinical data was conducted on preterm infants with a gestational age of <34 weeks who were admitted to the Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology from January 2018 to August 2024. These infants underwent hsPDA ligation after 1-2 courses of failed ibuprofen treatment. Based on the occurrence of blood pressure changes and oxygenation or ventilation failure postoperatively, the infants were divided into a cardiopulmonary dysfunction group (19 cases) and a non-cardiopulmonary dysfunction group (40 cases). Binary logistic regression analysis was performed to explore risk factors for postoperative cardiopulmonary dysfunction.
RESULTS:
Binary logistic regression analysis indicated that a faster average weight gain rate preoperatively and low levels of free triiodothyronine (FT3) within one week before surgery were risk factors for cardiopulmonary dysfunction following hsPDA ligation (P<0.05). Receiver operating characteristic curve analysis showed that an average weight gain rate >11.45 g/(kg·d) and FT3 levels <2.785 pmol/L within one week before surgery had predictive value for postoperative cardiopulmonary dysfunction (P<0.05). The combination of these two indicators provided the highest predictive value (P<0.05), with an area under the curve of 0.825, a sensitivity of 79%, and a specificity of 75%.
CONCLUSIONS
An average weight gain rate exceeding 11.45 g/(kg·d) and FT3 levels below 2.785 pmol/L within one week before surgery are risk factors affecting cardiopulmonary function after hsPDA ligation. Preoperative assessment and intervention should be strengthened to reduce the risk of postoperative complications.
Humans
;
Ductus Arteriosus, Patent/physiopathology*
;
Risk Factors
;
Female
;
Infant, Newborn
;
Male
;
Retrospective Studies
;
Infant, Premature
;
Ligation/adverse effects*
;
Hemodynamics
;
Postoperative Complications/etiology*
;
Logistic Models
;
Lung Diseases/etiology*
8.Recent Advances in Diagnosis and Treatment of Diffuse Alveolar Hemorrhage after Hematopoietic Stem Cell Transplantation --Review.
Journal of Experimental Hematology 2025;33(1):296-299
Diffuse alveolar hemorrhage (DAH) is a severe complication that can occur post- hematopoietic stem cell transplantation (HSCT). So far, the precise pathogenesis and risk factors of DAH post-HSCT remain elusive, diagnostic criteria have not reached a consensus, and the efficacy of existing therapeutic measures is far from satisfactory. At present, it is believed that the core mechanism of DAH post-HSCT is a vicious cycle initiated by endothelial injury, accompanied by a series of subsequent inflammatory and cellular responses. Treatment primarily focuses on managing inflammation, promoting hemostasis, and improving oxygenation. This paper reviews recent advances in understanding the pathogenesis, risk factors, clinical manifestations, diagnosis, and treatment of DAH following HSCT.
Humans
;
Hematopoietic Stem Cell Transplantation/adverse effects*
;
Hemorrhage/etiology*
;
Pulmonary Alveoli
;
Lung Diseases/etiology*
;
Risk Factors
9.Research Progress of Anti-lung Cancer Drug-related Interstitial Lung Disease.
Chinese Journal of Lung Cancer 2025;28(4):309-318
Lung cancer is the cancer with the highest incidence and mortality rate worldwide. In addition to the diversified treatment and prolonged lifespan in view of the development of medical technology, the side effect of medicine should not be ignored. Drug-induced interstitial lung disease (DI-ILD) is also commonly encountered during this process, and ILD triggered by the treatment of lung cancer characterized by the inflammation and scarring of lung tissue after the antitumor treatment in lung cancer leads to a poor prognosis and high mortality. The diagnosis and treatment of ILD caused by anti-lung cancer agents remains challenging in clinical settings and requires joint efforts from multidisciplinary team (MDT). This review systematically updates the epidemiology, molecular pathogenesis, genomics/genetics study, diagnosis and treatment of ILD related to anti-lung cancer agents. By the integration of the latest evidences, the paper offers clinical work references for early diagnosis of ILD related to anti-lung cancer agents to enhance the survival and quality of life of the lung cancer patients.
.
Humans
;
Lung Diseases, Interstitial/therapy*
;
Lung Neoplasms/drug therapy*
;
Antineoplastic Agents/therapeutic use*
10.Advances in Principle of Electrical Impedance Tomography and Its Application in Diagnosis and Treatment of Pulmonary Diseases.
Quchao ZOU ; Jinjiang JIN ; Jianping YE ; Lijian WANG ; Yiwen WANG ; Tianhai HUANG ; Jucheng ZHANG ; Yonghua CHU
Chinese Journal of Medical Instrumentation 2025;49(1):35-41
Electrical impedance tomography (EIT) is a technique that uses an array of electrodes to deliver safe stimulating currents and measures the boundary voltages between adjacent electrode pairs in the array in sequence. Subsequently, it reconstructs the impedance distribution in all or part of the tissue using reconstruction algorithms to achieve structural and functional imaging. Lung EIT technology features continuity, being radiation-free and non-invasive, and it can be used for real-time dynamic monitoring of the lungs in critically ill patients. This paper introduces the basic principles of lung EIT, analyzes the research progress and existing problems of the technology from the perspectives of hardware systems, imaging algorithms, and clinical applications (such as lung ventilation, lung perfusion, and lung function assessment), and discusses the development direction to provide ideas for expanding the clinical application of lung EIT.
Electric Impedance
;
Humans
;
Tomography/methods*
;
Lung Diseases/therapy*
;
Algorithms

Result Analysis
Print
Save
E-mail