1.Electrotaxis of alveolar epithelial cells in direct-current electric fields.
Chao-Yue YANG ; Jian-Hui SUN ; Kan ZHU ; Juan DU ; Ying ZHANG ; Cong-Hua LU ; Wen-Yi LIU ; Ke-Jun ZHANG ; An-Qiang ZHANG ; Ling ZENG ; Jian-Xin JIANG ; Li LI
Chinese Journal of Traumatology 2023;26(3):155-161
PURPOSE:
This study aims to elucidate the electrotaxis response of alveolar epithelial cells (AECs) in direct-current electric fields (EFs), explore the impact of EFs on the cell fate of AECs, and lay the foundation for future exploitation of EFs for the treatment of acute lung injury.
METHODS:
AECs were extracted from rat lung tissues using magnetic-activated cell sorting. To elucidate the electrotaxis responses of AECs, different voltages of EFs (0, 50, 100, and 200 mV/mm) were applied to two types of AECs, respectively. Cell migrations were recorded and trajectories were pooled to better demonstrate cellular activities through graphs. Cell directionality was calculated as the cosine value of the angle formed by the EF vector and cell migration. To further demonstrate the impact of EFs on the pulmonary tissue, the human bronchial epithelial cells transformed with Ad12-SV40 2B (BEAS-2B cells) were obtained and experimented under the same conditions as AECs. To determine the influence on cell fate, cells underwent electric stimulation were collected to perform Western blot analysis.
RESULTS:
The successful separation and culturing of AECs were confirmed through immunofluorescence staining. Compared with the control, AECs in EFs demonstrated a significant directionality in a voltage-dependent way. In general, type Ⅰ alveolar epithelial cells migrated faster than type Ⅱ alveolar epithelial cells, and under EFs, these two types of cells exhibited different response threshold. For type Ⅱ alveolar epithelial cells, only EFs at 200 mV/mm resulted a significant difference to the velocity, whereas for, EFs at both 100 mV/mm and 200 mV/mm gave rise to a significant difference. Western blotting suggested that EFs led to an increased expression of a AKT and myeloid leukemia 1 and a decreased expression of Bcl-2-associated X protein and Bcl-2-like protein 11.
CONCLUSION
EFs could guide and accelerate the directional migration of AECs and exert antiapoptotic effects, which indicated that EFs are important biophysical signals in the re-epithelialization of alveolar epithelium in lung injury.
Humans
;
Rats
;
Animals
;
Alveolar Epithelial Cells
;
Lung
;
Lung Injury
;
Cell Movement/physiology*
2.Development of an Active Mechanical Lung for Simulating Human Pulmonary Ventilation.
Yueyang YUAN ; Lei HU ; Zhongkun XIAO ; Tianle ZHOU ; Feng YAO ; Jiaqi CHEN
Chinese Journal of Medical Instrumentation 2023;47(3):264-267
At present, the passive simulated lung including the splint lung is an important device for hospitals and manufacturers in testing the functions of a respirator. However, the human respiration simulated by this passive simulated lung is quite different from the actual respiration. And it is not able to simulate the spontaneous breathing. Therefore, including" the device simulating respiratory muscle work "," the simulated thorax" and" the simulated airway", an active mechanical lung to simulate human pulmonary ventilation was designed:3D printed human respiratory tract was developed and connected the left and right air bags at the end of the respiratory tract to simulate the left and right lungs of the human body. By controlling a motor running to drive the crank and rod to move a piston back and forth, and to deliver an alternating pressure in the simulated pleural, and so as to generate an active respiratory airflow in airway. The experimental respiratory airflow and pressure from the active mechanical lung developed in this study are consistent with the target airflow and pressure which collected from the normal adult. The developed active mechanical lung function will be conducive to improve the quality of the respirator.
Adult
;
Humans
;
Lung/physiology*
;
Respiration
;
Pulmonary Ventilation
;
Respiration, Artificial
;
Ventilators, Mechanical
3.A wearable six-minute walk-based system to predict postoperative pulmonary complications after cardiac valve surgery: an exploratory study.
Yuqiang WANG ; Jiachen WANG ; Jian ZHANG ; Zeruxin LUO ; Yingqiang GUO ; Zhengbo ZHANG ; Pengming YU
Journal of Biomedical Engineering 2023;40(6):1117-1125
In recent years, wearable devices have seen a booming development, and the integration of wearable devices with clinical settings is an important direction in the development of wearable devices. The purpose of this study is to establish a prediction model for postoperative pulmonary complications (PPCs) by continuously monitoring respiratory physiological parameters of cardiac valve surgery patients during the preoperative 6-Minute Walk Test (6MWT) with a wearable device. By enrolling 53 patients with cardiac valve diseases in the Department of Cardiovascular Surgery, West China Hospital, Sichuan University, the grouping was based on the presence or absence of PPCs in the postoperative period. The 6MWT continuous respiratory physiological parameters collected by the SensEcho wearable device were analyzed, and the group differences in respiratory parameters and oxygen saturation parameters were calculated, and a prediction model was constructed. The results showed that continuous monitoring of respiratory physiological parameters in 6MWT using a wearable device had a better predictive trend for PPCs in cardiac valve surgery patients, providing a novel reference model for integrating wearable devices with the clinic.
Humans
;
Lung
;
Walking/physiology*
;
Walk Test
;
Heart Valves/surgery*
;
Postoperative Period
;
Postoperative Complications/etiology*
4.Research progress on electrical impedance tomography in pulmonary perfusion.
Linjun SHE ; Rui ZHOU ; Pan PAN ; Zhan LI ; Jihong LIU ; Fei XIE
Journal of Biomedical Engineering 2023;40(6):1249-1254
Electrical impedance tomography (EIT) is an emerging technology for real-time monitoring based on the impedance differences of different tissues and organs in the human body. It has been initially applied in clinical research as well as disease diagnosis and treatment. Lung perfusion refers to the blood flow perfusion function of lung tissue, and the occurrence and development of many diseases are closely related to lung perfusion. Therefore, real-time monitoring of lung perfusion is particularly important. The application and development of EIT further promote the monitoring of lung perfusion, and related research has made great progress. This article reviews the principles of EIT imaging, lung perfusion imaging methods, and their clinical applications in recent years, with the aim of providing assistance to clinical and scientific researchers.
Humans
;
Electric Impedance
;
Lung/physiology*
;
Tomography, X-Ray Computed
;
Perfusion
;
Tomography/methods*
5.From Lung to Brain: Respiration Modulates Neural and Mental Activity.
Josh GOHEEN ; John A E ANDERSON ; Jianfeng ZHANG ; Georg NORTHOFF
Neuroscience Bulletin 2023;39(10):1577-1590
Respiration protocols have been developed to manipulate mental states, including their use for therapeutic purposes. In this systematic review, we discuss evidence that respiration may play a fundamental role in coordinating neural activity, behavior, and emotion. The main findings are: (1) respiration affects the neural activity of a wide variety of regions in the brain; (2) respiration modulates different frequency ranges in the brain's dynamics; (3) different respiration protocols (spontaneous, hyperventilation, slow or resonance respiration) yield different neural and mental effects; and (4) the effects of respiration on the brain are related to concurrent modulation of biochemical (oxygen delivery, pH) and physiological (cerebral blood flow, heart rate variability) variables. We conclude that respiration may be an integral rhythm of the brain's neural activity. This provides an intimate connection of respiration with neuro-mental features like emotion. A respiratory-neuro-mental connection holds the promise for a brain-based therapeutic usage of respiration in mental disorders.
Humans
;
Respiration
;
Brain
;
Hyperventilation
;
Heart Rate/physiology*
;
Lung
7.Transcriptome analysis in fetal lungs of SRC1/SRC2 double-knockout mice.
Ya-Qin YU ; Huai-Yan CHEN ; Yuan-Yuan LIU ; Lu GAO
Acta Physiologica Sinica 2022;74(2):246-254
Steroid receptor coactivators (SRCs) significantly increase the transcriptional activity of various steroid hormone receptors, and play an important regulatory role in a variety of physiological functions such as food intake, sleep, stress response and reproduction. Previous studies have found that pregnant mice carrying fetuses with SRC1/2 double-knockout (dKO) manifested delayed labor, partly due to the hypoplasia of fetal lungs and the decreased secretion of pulmonary surfactant protein-A (SP-A) and platelet activating factor (PAF). However, there is still a lack of systematic analysis of the changes in gene expression at the whole transcriptome level in the fetal lungs of SRC1/2 dKO mice. In this study, the SRC1KO, SRC2KO, SRC1/2 dKO and wild-type (WT) mouse fetal lung samples were collected at 18.5 days post coitus. The Illumina platform was employed for transcriptome mRNA sequencing, and then the differentially expressed genes (DEGs) were annotated and analyzed by GO and KEGG analysis. The results showed that the proportion of quality score of the sequencing data above Q30 in all samples was more than 92% and passed the quality control. Compared with WT fetal lungs, SRC1KO and SRC2KO fetal lungs had 61 and 32 DEGs, respectively; SRC1/2 dKO fetal lungs had 480, 11 and 901 DEGs compared with WT, SRC1KO and SRC2KO fetal lungs, respectively. Among these genes, Aspg, Crispld2, Eln, Ntsr2, Slc10a6 and Vgll3 were the unique DEGs of SRC1/2 dKO fetal lungs compared with other genotype mice. Real-time PCR and Western blotting verified the reliability of transcriptome sequencing results. The GO analysis of the DEGs between SRC1/2 dKO and WT mouse fetal lungs showed that the DEGs were significantly enriched in the extracellular space, extracellular region, and extracellular matrix in terms of cellular component. In the biological process, they were significantly enriched in the term of development of multiple organs. KEGG pathway analysis showed that the DEGs were mainly enriched in signaling pathways such as the complement system, extracellular matrix-receptor interactions, and protein digestion and absorption. In summary, this study comprehensively revealed the changes of gene expression in the fetal lungs of SRC1/2 dKO mice at the transcriptome level, which provides a new theoretical basis for the study of the developmental regulatory mechanism of the fetal lung during pregnancy, and the fetus-derived signals that affect the initiation of labor.
Animals
;
Female
;
Gene Expression Profiling
;
Lung/physiology*
;
Mice
;
Mice, Knockout
;
Pregnancy
;
Reproducibility of Results
;
Transcriptome
8.Effects on extravascular lung water of lung protective ventilation strategy applied on piglets with acute respiratory distress syndrome induced by paraquat.
Jin Zhu WANG ; Chun Lei ZHENG ; Hui ZHENG ; Xiao Gang LIU ; Chao LAN
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(1):7-11
Objective: To study the effects on extravascular lung water of lung protective ventilation strategy applying on piglets with acute respiratory distress syndrome (ARDS) induced by paraquat (PQ) under pulse indicating continuous cardiac output (PiCCO) monitoring. Methods: The piglets models with ARDS induced by PQ were established in June 2020 and all of them were received mechanical ventilation and divided into three groups according to tidal volume (V(T)) : small V(T) group (6 ml/kg) , middle V(T) group (10 ml/kg) and large V(T) group (15 ml/kg) , there were 5 piglets in each group. The positive end expiratory pressure (PEEP) were all setup on 10 cmH(2)O. The indexes such as arterial blood gas analysis, oxygenation index (OI) , extravascular lung water index (ELWI) and pulmonary vascular permeability index (PVPI) were monitored at time of before the model was established (baseline) , time of the model was established (t(0)) and 2 h (t(2)) , 4 h (t(4)) , 6 h (t(6)) after mechanical ventilation. Lung tissue were punctured at time of baseline, t(0) and t(6) to be stained by Hematoxylin-eosin (HE) staining and pulmonary pathology were observed under light microscopy. Results: The heart rate (HR) , mean arterial pressure (MAP) and partial pressure of carbon dioxide (PaCO(2)) of all groups were higher than the base value while the pH values, partial pressure of oxygen (PaO(2)) and OI were lower than the base value when the models were established (P<0.05) . After mechanical ventilation, the HR and MAP values of all groups at t(2), t(4) and t(6) were lower than t(0) while the PaCO(2) of t(4) and t(6) were all higher than t(0), the differences were statistically significant (P<0.05) . The PaO(2) and OI of all groups showed a trend of rising at first and then decreasing after mechanical ventilation. The MAP, PaO(2), PaCO(2) and OI of the middle V(T) group and large V(T) group were apparently lower than that of the small V(T) group at t(2), t(4) and t(6) (P<0.05) . The ELWI and PVPI at t(0) of all groups were higher than that of baseline (P<0.05) . The ELWI of the small V(T) group at t(6) were lower than t(0) of the same group and t(6) of the middle V(T) group and large V(T) group (P<0.05) . HE staining showed congestion and edema of alveolar tissue, swelling of capillaries, exudation of red blood cells and widening of alveolar septum in piglets after successful modeling. And further widening of alveolar septum and rupture of alveolar septum could be seen in the lung tissues of each group at t(6), and the injury was the slightest in the small V(T) group. Conclusion: The lung protective ventilation strategy can alleviate the extravascular lung water and ARDS induced by PQ and improve oxygenation.
Animals
;
Extravascular Lung Water
;
Lung/physiology*
;
Paraquat/toxicity*
;
Respiration, Artificial/adverse effects*
;
Respiratory Distress Syndrome/chemically induced*
;
Swine
9.Research on the mechanism of hypoxia promoting the migration of lung adenocarcinoma A549 cells.
Jia-Hao JIN ; Bao-Sheng ZHAO ; Yu-Zhen LIU
Chinese Journal of Applied Physiology 2022;38(1):68-74
Objective: To investigate the mechanism that hypoxia promotes the migration of lung adenocarcinoma A549 cells. Methods: A549 cells were cultured and cells that knockdown of acetyl-CoA carboxylase 1 (ACC1) were obtained by transfection with lentivirus, and cells that knockdown of sterol regulatory element-binding proteins-1 (SREBP-1) were obtained by treated with si-RNA. A549 cells were treated with hypoxia combined with hypoxia inducible factor-1α (HIF-1α) inhibitor PX-478 (25 μmol); Hypoxia combined with linoleic acid (LA) (20 μmol) treated A549 cells with ACC1 knockdown, and A549 cells with SREBP-1 knockdown were treated by hypoxia. Transwell migration assay was used to detect cell migration. Western blot was conducted to detect HIF-1α, ACC1 and epithelial mesenchymal transition (EMT) related proteins, Vimentin, E-Cadherin and SREBP-1; Real-time fluorescent quantitative polymerase chain reaction (RT-qPCR) was performed to detect the changes of ACC1 and SREBP-1 mRNA in A549 cells after hypoxia and HIF-1α inhibitor PX-478 (25 μmol) treatment. Each experiment was repeated three times. Results: Compared with the normoxic control group, hypoxia promoted the migration of A549 cells (P<0.01), and up-regulated the expressions of ACC1, HIF-1α (all P<0.01) and SREBP-1 (P<0.05). PX-478 (25 μmol) inhibited the migration of A549 cells induced by hypoxia and down-regulated the expression of SREBP-1 (all P<0.05). ACC1 mRNA and SREBP-1 mRNA levels were increased after hypoxia treatment of A549 cells (all P<0.05). The levels of ACC1 mRNA and SREBP-1 mRNA were decreased after A549 cells treated with hypoxia combined with PX-478 (25 μmol) for 24 h (P<0.05, P<0.01). Knockdown of SREBP-1 in A549 cells was obtained by transfection with si-RNA. Transwell migration assay showed the number of cell migration in si-SREBP-1 group was less than that in normoxia control group (P<0.01). The si-SREBP-1 group and the si-NC group were treated with hypoxia. Compared with the control group, the number of cell migration in the si-SREBP-1 group was decreased (P<0.01), however, the difference was not statistically significant compared with the normoxia si-SREBP-1 group (P>0.05). Western blot showed that the expression of ACC1 in the si-SREBP-1 group was lower than that in the control group (P<0.01). Compared with the control group, the expression of ACC1 was decreased after si-SREBP-1 group treated with hypoxia (P<0.01). Knockdown of ACC1 inhibited the migration of A549 cells (P<0.05). After knockdown of ACC1, the migration number of A549 cells under normoxia and 5% O2 conditions had no significant difference (P>0.05). Application of LA under hypoxia condition rescued ACC1-knockdown induced inhibitory effect on hypoxia-promoted A549 cell migration (P<0.05). Conclusion: Hypoxia promotes migration of lung adenocarcinoma A549 cells by regulating fatty acid metabolism through HIF-1α/SREBP-1/ACC1 pathway.
A549 Cells
;
Acetyl-CoA Carboxylase
;
Adenocarcinoma of Lung
;
Cell Hypoxia/physiology*
;
Cell Line, Tumor
;
Humans
;
Hypoxia
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
Lung Neoplasms
;
RNA/metabolism*
;
RNA, Messenger/metabolism*
;
Sterol Regulatory Element Binding Protein 1/metabolism*
10.Host metabolism dysregulation and cell tropism identification in human airway and alveolar organoids upon SARS-CoV-2 infection.
Rongjuan PEI ; Jianqi FENG ; Yecheng ZHANG ; Hao SUN ; Lian LI ; Xuejie YANG ; Jiangping HE ; Shuqi XIAO ; Jin XIONG ; Ying LIN ; Kun WEN ; Hongwei ZHOU ; Jiekai CHEN ; Zhili RONG ; Xinwen CHEN
Protein & Cell 2021;12(9):717-733
The coronavirus disease 2019 (COVID-19) pandemic is caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is spread primary via respiratory droplets and infects the lungs. Currently widely used cell lines and animals are unable to accurately mimic human physiological conditions because of the abnormal status of cell lines (transformed or cancer cells) and species differences between animals and humans. Organoids are stem cell-derived self-organized three-dimensional culture in vitro and model the physiological conditions of natural organs. Here we showed that SARS-CoV-2 infected and extensively replicated in human embryonic stem cells (hESCs)-derived lung organoids, including airway and alveolar organoids which covered the complete infection and spread route for SARS-CoV-2 within lungs. The infected cells were ciliated, club, and alveolar type 2 (AT2) cells, which were sequentially located from the proximal to the distal airway and terminal alveoli, respectively. Additionally, RNA-seq revealed early cell response to virus infection including an unexpected downregulation of the metabolic processes, especially lipid metabolism, in addition to the well-known upregulation of immune response. Further, Remdesivir and a human neutralizing antibody potently inhibited SARS-CoV-2 replication in lung organoids. Therefore, human lung organoids can serve as a pathophysiological model to investigate the underlying mechanism of SARS-CoV-2 infection and to discover and test therapeutic drugs for COVID-19.
Adenosine Monophosphate/therapeutic use*
;
Alanine/therapeutic use*
;
Alveolar Epithelial Cells/virology*
;
Antibodies, Neutralizing/therapeutic use*
;
COVID-19/virology*
;
Down-Regulation
;
Drug Discovery
;
Human Embryonic Stem Cells/metabolism*
;
Humans
;
Immunity
;
Lipid Metabolism
;
Lung/virology*
;
RNA, Viral/metabolism*
;
SARS-CoV-2/physiology*
;
Virus Replication/drug effects*

Result Analysis
Print
Save
E-mail