1.Mechanism of isorhamnetin in alleviating acute lung injury by regulating pyroptosis medicated by NLRP3/ASC/caspase-1 axis.
Ya-Lei SUN ; Yu GUO ; Xin-Yu WANG ; Ya-Su ZHANG ; Xue CHENG ; Ke ZHU ; Li-Dian CHEN ; Xiao-Dong FENG
China Journal of Chinese Materia Medica 2025;50(15):4120-4128
This study aims to explore the intervention effects of isorhamnetin(Isor) on acute lung injury(ALI) and its regulatory effects on pyroptosis mediated by the NOD-like receptor family pyrin domain containing 3(NLRP3)/apoptosis-associated speck-like protein containing a CARD(ASC)/cysteine aspartate-specific protease-1(caspase-1) axis. In the in vivo experiments, 60 BALB/c mice were divided into five groups. Except for the control group, the other groups were administered Isor by gavage 1 hour before intratracheal instillation of LPS to induce ALI, and tissues were collected after 12 hours. In the in vitro experiments, RAW264.7 cells were divided into five groups. Except for the control group, the other groups were pretreated with Isor for 2 hours before LPS stimulation and subsequent assessments. Hematoxylin-eosin(HE) staining was used to observe pathological changes in lung tissue, while lung swelling, protein levels in bronchoalveolar lavage fluid(BALF), and myeloperoxidase(MPO) levels in lung tissue were measured. Cell proliferation toxicity and viability were assessed using the cell counting kit-8(CCK-8) method. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of interleukin-1β(IL-1β), IL-6, IL-18, and tumor necrosis factor-α(TNF-α). Protein levels of NLRP3, ASC, cleaved caspase-1, and the N-terminal fragment of gasdermin D(GSDMD-N) were evaluated using immunohistochemistry, immunofluorescence, and Western blot. The results showed that in the in vivo experiments, Isor significantly improved pathological damage in lung tissue, reduced lung swelling, protein levels in BALF, MPO levels in lung tissue, and levels of inflammatory cytokines such as IL-1β, IL-6, IL-18, and TNF-α, and inhibited the high expression of the NLRP3/ASC/caspase-1 axis and the pyroptosis core gene GSDMD-N. In the in vitro experiments, the safe dose of Isor was determined through cell proliferation toxicity assays. Isor reduced cell death and inhibited the expression levels of the NLRP3/ASC/caspase-1 axis, GSDMD-N, and inflammatory cytokines. In conclusion, Isor may alleviate ALI by modulating pyroptosis mediated by the NLRP3/ASC/caspase-1 axis.
Animals
;
Pyroptosis/drug effects*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Acute Lung Injury/physiopathology*
;
Mice
;
Mice, Inbred BALB C
;
Quercetin/pharmacology*
;
Caspase 1/genetics*
;
CARD Signaling Adaptor Proteins/genetics*
;
Male
;
RAW 264.7 Cells
;
Humans
;
Lung/metabolism*
2.Research progress and exploration of traditional Chinese medicine in treatment of sepsis-acute lung injury by inhibiting pyroptosis.
Wen-Yu WU ; Nuo-Ran LI ; Kai WANG ; Xin JIAO ; Wan-Ning LAN ; Yun-Sheng XU ; Lin WANG ; Jing-Nan LIN ; Rui CHEN ; Rui-Feng ZENG ; Jun LI
China Journal of Chinese Materia Medica 2025;50(16):4425-4436
Sepsis is a systemic inflammatory response caused by severe infection or trauma, and is one of the common causes of acute lung injury(ALI) and acute respiratory distress syndrome(ARDS). Sepsis-acute lung injury(SALI) is a critical clinical condition with high morbidity and mortality. Its pathogenesis is complex and not yet fully understood, and there is currently a lack of targeted and effective treatment options. Pyroptosis, a novel form of programmed cell death, plays a key role in the pathological process of SALI by activating inflammasomes and releasing inflammatory factors, making it a potential therapeutic target. In recent years, the role of traditional Chinese medicine(TCM) in regulating signaling pathways related to pyroptosis through multi-components and multi-targets has attracted increasing attention. TCM may intervene in pyroptosis by inhibiting the activation of NLRP3 inflammasomes and regulating the expression of Caspase family proteins, thus alleviating inflammatory damage in lung tissues. This paper systematically reviews the molecular regulatory network of pyroptosis in SALI and explores the potential mechanisms and research progress on TCM intervention in cellular pyroptosis. The aim is to provide new ideas and theoretical support for basic research and clinical treatment strategies of TCM in SALI.
Pyroptosis/drug effects*
;
Humans
;
Sepsis/genetics*
;
Acute Lung Injury/physiopathology*
;
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional
;
Inflammasomes/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
3.Epithelial-mesenchymal Transition: Biological Basis and Clinical Prospects of Lung Cancer Invasion, Metastasis, and Drug Resistance.
Hengxing SUN ; Mengting XIONG ; Shuanshuan XIE ; Jing WEN
Chinese Journal of Lung Cancer 2025;28(2):155-164
Lung cancer is the leading cause of cancer-related deaths worldwide, characterized by high incidence and mortality rates. The primary reasons for treatment failure in lung cancer patients are tumor invasion and drug resistance, particularly resistance to chemotherapeutic agents and epidermal growth factor receptor (EGFR) mutant targeted therapy, which considerably undermine the therapeutic outcomes for those with advanced lung cancer. Epithelial-mesenchymal transition (EMT) serves as a crucial biological process closely associated with physiological or pathological processes such as tissue embryogenesis, organogenesis, wound repair, and tumor invasion. Numerous studies have indicated that EMT, mediated through various signaling pathways, plays a pivotal role in the initiation, progression, and metastasis of lung cancer, while it is also closely associated with drug resistance in lung cancer cells. Therefore, research focusing on the molecular mechanisms and pathophysiology related to EMT can contribute to reversing drug resistance in drug treatment for lung cancer, thereby improving prognosis. This article reviews the progress in research on EMT in the invasion, metastasis, and drug resistance of lung cancer based on relevant domestic and international literature.
Humans
;
Epithelial-Mesenchymal Transition/drug effects*
;
Drug Resistance, Neoplasm
;
Lung Neoplasms/physiopathology*
;
Neoplasm Metastasis
;
Neoplasm Invasiveness
;
Animals
;
Antineoplastic Agents/therapeutic use*
4.Casticin inhibits proliferation of non-small cell lung cancer cells by regulating glucose metabolism through suppression of HIF-1α.
Jing-Yi WEI ; Hui NING ; Jia-Qi DONG ; Le HAN ; Wen-Juan CHEN ; Guang-Yan LEI
China Journal of Chinese Materia Medica 2024;49(24):6755-6762
The study investigated the effect of casticin on the proliferation of non-small cell lung cancer(NSCLC) H322 cells and explored its molecular mechanism. Firstly, the cell counting kit-8(CCK-8) assay, colony formation assay, and EdU assay were used to detect the effect of casticin on the proliferation capacity of H322 cells under different concentrations and treatment durations. Then, glucose uptake, lactate production, extracellular pH, and oxygen consumption of H322 cells were measured before and after casticin treatment to analyze its impact on glycolysis in NSCLC H322 cells. Finally, real-time fluorescence quantitative PCR(RT-qPCR) and Western blot assays were performed to explore glycolysis-related molecules affected by casticin. The experiments showed that casticin inhibited the proliferation of NSCLC H322 cells in a dose-and time-dependent manner, with half-maximal inhibitory concentrations(IC_(50)) of 28.64 and 19.41 μmol·L~(-1) after 48 and 72 hours of treatment, respectively. Casticin also inhibited glucose uptake and lactate production in H322 cells, while increasing extracellular pH and oxygen consumption. Further investigation revealed that casticin inhibited the expression of glycolysis-related molecules, including glucose transporter 1(GLUT1), hexokinase 2(HK2), aldolase A(ALDOA), pyruvate kinase M2(PKM2), and hypoxia-inducible factor-1α(HIF-1α). Overexpression of HIF-1α was found to reverse the inhibitory effects of casticin on H322 cell proliferation and glycolysis. These findings suggest that casticin may regulate cellular glycolysis by inhibiting the expression of HIF-1α, thereby inhibiting the proliferation of NSCLC H322 cells. This study identifies a potential drug for the treatment of NSCLC and provides a direction for further research.
Humans
;
Cell Proliferation/drug effects*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Carcinoma, Non-Small-Cell Lung/physiopathology*
;
Lung Neoplasms/drug therapy*
;
Glucose/metabolism*
;
Cell Line, Tumor
;
Glycolysis/drug effects*
5.Effect of electroacupuncture at "Zusanli" (ST 36) and "Yanglingquan" (GB 34) on perinatal nicotine-exposure-induced lung function and morphology of neonatal rats.
Hang SU ; Bo JI ; Guo-Zhen ZHAO ; Yi-Tian LIU ; Yun-Peng GE ; Jian DAI ; Ya-Wen LU ; Dan WANG ; Sakurai REIKO ; V K REHAN ; Ming-Na YAN ; Xiao-Min SUN ; Hong-Xin BAI ; Meng-Wei GUO ; Xiao-Xuan REN
Chinese Acupuncture & Moxibustion 2019;39(6):632-636
OBJECTIVE:
To compare the effects of electroacupuncture (EA) at "Zusanli" (ST 36) versus "Yanglingquan" (GB 34) in the pregnant rats on perinatal nicotineexposureinduced lung function and morphology of newborn rats and explore the rule of acupoint effect in EA for the prevention from lung dysplasia in newborn rats.
METHODS:
A total of 24 female SD rats were randomized into a normal saline group (S group), a nicotine group (N group), a nicotineST 36 group (N + ST 36 group) and a nicotineGB 34 group (N+GB 34 group), 6 rats in each one. Starting at the 6th day of pregnancy, 0.9% sodium chloride solution was injected subcutaneously in the S group, 1 mg/kg; and in the rest 3 groups, nicotine of the same dose was injected through to the 21st postnatal day to establish the perinatal nicotineexposure model. Simultaneously, during model preparation, EA was applied at "Zusanli" (ST 36) and "Yanglingquan" (GB 34) in the N+ST 36 group and the N+GB 34 group respectively, once a day, through to the 21st postnatal day. The lung function analytic system for small animal was adopted to observe the changes in lung function indicators in newborn rats, such as peak inspiratory flow (PIF), peak expiratory flow (PEF), expiratory resistance (RE), inspiratory resistance (RI) and dynamic compliance (Cdyn). HE staining was used to observe the morphological changes of lung, such as alveolar fusion and rupture.
RESULTS:
Compared with the S group, PEF and Cdyn were lower and PIF, RI and RE higher in the N group (all <0.01), additionally, alveoli were fused and ruptured, alveolar wall thickened, the numbers of alveoli reduced, the interspace of alveoli enlarged and the diameter increased (<0.01). Compared with the N group, in the N+ST 36 group, PEF and Cdyn were increased, PIF, RI and RE reduced (<0.05, <0.01), the alveolar fusion and rupture relieved, the numbers of alveoli increased, alveolar wall thinner, the interpsace of alveoli became normal and the diameter was reduced significantly (<0.01). In the N+GB 34 group, the changes of lung function and morphological indicators were not significant (>0.05).
CONCLUSION
Electroacupuncture at "Zusanli" (ST 36) in the pregnant rats significantly improves the perinatal nicotineexposureinduced lung function and morphology of newborn rats than electroacupuncture at "Yanglingquan" (GB 34).
Acupuncture Points
;
Animals
;
Animals, Newborn
;
Electroacupuncture
;
Female
;
Lung
;
drug effects
;
physiopathology
;
Nicotine
;
toxicity
;
Pregnancy
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
6.The protective effects of vitamin E on lung injury caused by high temperature and PM in COPD rats.
Jiang-Tao LIU ; Bin LUO ; Xiao-Tao HE ; Lan-Yu LI ; Sheng-Gang XU
Chinese Journal of Applied Physiology 2019;35(4):293-296
OBJECTIVE:
To investigate the effects of vitamin E on the respiratory function impairment in rats with chronic obstructive pulmonary disease (COPD) after exposed to high temperature and PM.
METHODS:
Fifty-four 7-week-old SPF male Wistar rats were randomly divided into 9 experimental groups (n=6). The rat COPD model was established by lipopolysaccharide (LPS) and smoke exposure. After modeled, the rats were tracheal instilled with PM (0 mg/ml, 3.2 mg/ml) and intraperitoneally injected with vitamin E at the dose of 40 mg/kg (20 mg/ml). Part of rats (high temperature groups) were then exposed to high temperature (40℃), once (8 h) a day for three consecutive days. After the last exposure, the lung function of rats was detected. The expression levels of inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α) and monocyte chemotactic protein-1 (MCP-1) were detected by corresponding ELISA kits.
RESULTS:
Compared with the control group, exposure of high temperature and PM could inhibit the lung function of COPD rats significantly (P<0.05); the level of MCP-1 was increased significantly in PM-exposure groups (P<0.05); iNOS was increased significantly in the groups of high temperature (P<0.05). Compared with the single-PM exposure groups, TNF-α in lung was decreased in the normal temperature health group and high temperature COPD group (P<0.05) after treated with vitamin E; MCP-1 was decreased in all vitamin E-treated groups (P<0.05); the decreased iNOS only appeared in the group of high temperature with vitamin E treatment.
CONCLUSION
High temperature and PM could aggravate the inflammation of COPD rats. As an antioxidant, vitamin E may protect the lung from the damage effects.
Animals
;
Chemokine CCL2
;
metabolism
;
Hot Temperature
;
adverse effects
;
Lung
;
physiopathology
;
Male
;
Nitric Oxide Synthase Type II
;
metabolism
;
Particulate Matter
;
adverse effects
;
Pulmonary Disease, Chronic Obstructive
;
drug therapy
;
Random Allocation
;
Rats
;
Rats, Wistar
;
Tumor Necrosis Factor-alpha
;
metabolism
;
Vitamin E
;
pharmacology
7.Houttuynia cordata polysaccharide alleviated intestinal injury and modulated intestinal microbiota in H1N1 virus infected mice.
Mei-Yu CHEN ; Hong LI ; Xiao-Xiao LU ; Li-Jun LING ; Hong-Bo WENG ; Wei SUN ; Dao-Feng CHEN ; Yun-Yi ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2019;17(3):187-197
Houttuynia cordata polysaccharide (HCP) is extracted from Houttuynia cordata, a key traditional Chinese medicine. The study was to investigate the effects of HCP on intestinal barrier and microbiota in H1N1 virus infected mice. Mice were infected with H1N1 virus and orally administrated HCP at a dosage of 40 mg(kg(d. H1N1 infection caused pulmonary and intestinal injury and gut microbiota imbalance. HCP significantly suppressed the expression of hypoxia inducible factor-1α and decreased mucosubstances in goblet cells, but restored the level of zonula occludens-1 in intestine. HCP also reversed the composition change of intestinal microbiota caused by H1N1 infection, with significantly reduced relative abundances of Vibrio and Bacillus, the pathogenic bacterial genera. Furthermore, HCP rebalanced the gut microbiota and restored the intestinal homeostasis to some degree. The inhibition of inflammation was associated with the reduced level of Toll-like receptors and interleukin-1β in intestine, as well as the increased production of interleukin-10. Oral administration of HCP alleviated lung injury and intestinal dysfunction caused by H1N1 infection. HCP may gain systemic treatment by local acting on intestine and microbiota. This study proved the high-value application of HCP.
Animals
;
Cytokines
;
metabolism
;
Drugs, Chinese Herbal
;
chemistry
;
pharmacology
;
therapeutic use
;
Gastrointestinal Microbiome
;
drug effects
;
Houttuynia
;
chemistry
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
metabolism
;
Inflammation
;
drug therapy
;
pathology
;
Influenza A Virus, H1N1 Subtype
;
pathogenicity
;
Intestinal Mucosa
;
drug effects
;
metabolism
;
microbiology
;
pathology
;
Lung
;
drug effects
;
metabolism
;
pathology
;
Male
;
Mice, Inbred BALB C
;
Orthomyxoviridae Infections
;
drug therapy
;
pathology
;
physiopathology
;
Plant Extracts
;
chemistry
;
Polysaccharides
;
chemistry
;
pharmacology
;
therapeutic use
;
Toll-Like Receptors
;
metabolism
;
Zonula Occludens-1 Protein
;
metabolism
8.Feiji Recipe inhibits the growth of lung cancer by modulating T-cell immunity through indoleamine-2,3-dioxygenase pathway in an orthotopic implantation model.
Bin LUO ; Zu-Jun QUE ; Zhi-Yi ZHOU ; Qing WANG ; Chang-Sheng DONG ; Yi JIANG ; Bing HU ; Hui SHI ; Yu JIN ; Jian-Wen LIU ; He-Gen LI ; Lin WANG ; Jian-Hui TIAN
Journal of Integrative Medicine 2018;16(4):283-289
OBJECTIVEEscape from the body's immune response is a basic characteristic of lung cancer, and indoleamine-2,3-dioxygenase (IDO) plays a key role in mediating immune escape of non-small-cell lung cancer, which leads to recurrence and metastasis. Feiji Recipe, a compound Chinese herbal medicine, has the effect of stabilizing lesions and prolonging survival in patients with lung cancer. The purpose of this study was to investigate the mechanisms underlying the anticancer properties of Feiji Recipe.
METHODSAn orthotopic transplant model of mouse Lewis lung cancer, with stable expression of IDO gene, was established in C57BL/6 mice. Optical imaging was used to observe the effects of Feiji Recipe in the treatment of lung cancer in vivo. The effects of Feiji Recipe on the proliferation of mouse Lewis lung cancer cell line 2LL, 2LL-enhanced green fluorescent protein (2LL-EGFP) and 2LL-EGFP-IDO were investigated, and the apoptosis of T-cells was examined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide using flow cytometry. Chemical composition of Feiji Recipe was validated by high-performance liquid chromatography.
RESULTSCompared to the control group, the survival of animals treated with Feiji Recipe was significantly prolonged (P = 0.0074), and the IDO protein level decreased (P = 0.0072); moreover, the percentages of CD4CD25 T-cells and Foxp3 T-cells were significantly decreased (P < 0.05). The molecular mechanism of Feiji Recipe against lung cancer may relate to the regulation of immune cells, such as T-cells and regulatory T-cells.
CONCLUSIONThe molecular mechanism of Feiji Recipe in treatment of lung cancer is to restore the function of T-cells in the cancer microenvironment through interfering with the IDO pathway.
Animals ; Apoptosis ; drug effects ; Carcinoma, Lewis Lung ; drug therapy ; enzymology ; immunology ; physiopathology ; Cell Proliferation ; drug effects ; Disease Models, Animal ; Drugs, Chinese Herbal ; administration & dosage ; Growth Inhibitors ; administration & dosage ; Humans ; Indoleamine-Pyrrole 2,3,-Dioxygenase ; genetics ; immunology ; Lung Neoplasms ; drug therapy ; enzymology ; immunology ; physiopathology ; Male ; Mice ; Mice, Inbred C57BL ; T-Lymphocytes, Regulatory ; drug effects ; immunology
9.Role of PD 0332991 on the Proliferation and Apoptosis of Vascular Endothelial Cells.
Chenlong ZHAO ; Minghui LIU ; Yongwen LI ; Hongbing ZHANG ; Ying LI ; Hao GONG ; Yin YUAN ; Weiting LI ; Hongyu LIU ; Jun CHEN
Chinese Journal of Lung Cancer 2018;21(5):375-382
BACKGROUND:
Angiogenesis is an important process in the development of tumor. PD 0332991, a cell cycle inhibitor, can specifically inhibit CD4/6 phosphorylation and cell cycle progression. In xeongraft mice models, PD 0332991 treated mice had significantly decreased angiogenesis and vascular density compared with the control group, but the mechanism remains unknown. The purpose of this study is to investigate the role and molecular mechanism of PD 0332991 on vascular endothelial cells.
METHODS:
EA.hy926 cells, a kind of vascular endothelial cell, were used as the research model. The effects of PD 0332991 on the activity and proliferation of EA.hy926 cells were detected by the MTT, EdU assays. Wound-healing assays and transwell assays were used to determine the effects of PD 0332991 on the mobility of EA.hy926. The influence of PD 0332991 on cell cycle and apoptosis of endothelial cells was tested by flow cytometry, and the Western blot was applied to observe the expression of cell cycle related proteins in EA.hy926 cells treated by PD 0332991.
RESULTS:
PD 0332991 significantly inhibited the proliferation and mobility of EA.hy926 cells, caused cell cycle arrest and apoptosis. At the same time, PD 0332991 inhibited the expression of CDK4/6 and phosphorylation of Rb, and thus inhibited the cell cycle progression of EA.hy926 cells.
CONCLUSIONS
PD 0332991 can inhibit the proliferation and activity of endothelial cells and induces apoptosis.
Angiogenesis Inhibitors
;
pharmacology
;
Animals
;
Apoptosis
;
drug effects
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Cell Survival
;
drug effects
;
Cyclin-Dependent Kinase 4
;
genetics
;
metabolism
;
Cyclin-Dependent Kinase 6
;
genetics
;
metabolism
;
Endothelial Cells
;
cytology
;
drug effects
;
metabolism
;
Humans
;
Lung Neoplasms
;
drug therapy
;
genetics
;
metabolism
;
physiopathology
;
Mice
;
Piperazines
;
pharmacology
;
Pyridines
;
pharmacology
10.Research Progress of the Role of EMT in EGFR-TKIs Resistance of Non-small Cell Lung Cancer.
Li YU ; Sha HUANG ; Wang LV ; Zhehao HE ; Jian HU
Chinese Journal of Lung Cancer 2018;21(12):907-911
Lung cancer is the one of the malignant tumor of the highest morbidity and mortality over the world, and non-small cell lung cancer (NSCLC) makes up about 80%. Nowadays, molecular targeted therapy has been the first-line treatment for NSCLC. Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are increasingly used in the clinical treatment, but the EGFR-TKIs acquired resistance becomes the bottleneck of continuation of EGFR-TKIs therapy. Epithelial-mesenchymal transition (EMT) is a biological phenomenon in which epithelial cells are transformed into mesenchymal cells. EMT promoted metastasis, invasion of lung cancer and conferred characteristic of stem cell on cancer cells. Meanwhile, EMT is one of an important cause of EGFR-TKIs resistance in NSCLC. The recent studies have found that resistant cells restored the sensitivity to EGFR-TKIs by reversing EMT which suggested that the target of EMT may contribute to inhibit or even reverse the resistance of EGFR-TKIs. Here we make a review about research progress of EMT in EGFR-TKIs resistance in NSCLC.
.
Animals
;
Antineoplastic Agents
;
administration & dosage
;
Carcinoma, Non-Small-Cell Lung
;
drug therapy
;
genetics
;
metabolism
;
physiopathology
;
Drug Resistance, Neoplasm
;
Epithelial-Mesenchymal Transition
;
drug effects
;
ErbB Receptors
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Humans
;
Lung Neoplasms
;
drug therapy
;
genetics
;
metabolism
;
physiopathology
;
Protein Kinase Inhibitors
;
administration & dosage

Result Analysis
Print
Save
E-mail