2.Structural and physiological changes of the human body upon SARS-CoV-2 infection.
Zhonglin WU ; Qi ZHANG ; Guo YE ; Hui ZHANG ; Boon Chin HENG ; Yang FEI ; Bing ZHAO ; Jing ZHOU
Journal of Zhejiang University. Science. B 2021;22(4):310-317
Since December 2019, the novel coronavirus (severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) has spread to many countries around the world, developing into a global pandemic with increasing numbers of deaths reported worldwide. To data, although some vaccines have been developed, there are no ideal drugs to treat novel coronavirus pneumonia (coronavirus disease 2019 (COVID-19)). By examining the structure of the coronavirus and briefly describing its possible pathogenesis based on recent autopsy reports conducted by various teams worldwide, this review analyzes the possible structural and functional changes of the human body upon infection with SARS-CoV-2. We observed that the most prominent pathological changes in COVID-19 patients are diffuse alveolar damage (DAD) of the lungs and microthrombus formation, resulting in an imbalance of the ventilation/perfusion ratio and respiratory failure. Although direct evidence of viral infection can also be found in other organs and tissues, the viral load is relatively small. The conclusion that the injuries of the extra-pulmonary organs are directly caused by the virus needs further investigation.
COVID-19/physiopathology*
;
Human Body
;
Humans
;
Immune Evasion
;
Lung/virology*
;
Viral Load
3.Application of immune cell infiltration in the diagnosis and prognosis of non-small cell lung cancer.
Huihui WAN ; Zhenhao LIU ; Xiaoxiu TAN ; Guangzhi WANG ; Yong XU ; Lu XIE ; Yong LIN
Chinese Journal of Biotechnology 2020;36(4):740-749
Immune cell infiltration is of great significance for the diagnosis and prognosis of cancer. In this study, we collected gene expression data of non-small cell lung cancer (NSCLC) and normal tissues included in TCGA database, obtained the proportion of 22 immune cells by CIBERSORT tool, and then evaluated the infiltration of immune cells. Subsequently, based on the proportion of 22 immune cells, a classification model of NSCLC tissues and normal tissues was constructed using machine learning methods. The AUC, sensitivity and specificity of classification model built by random forest algorithm reached 0.987, 0.98 and 0.84, respectively. In addition, the AUC, sensitivity and specificity of classification model of lung adenocarcinoma and lung squamous carcinoma tissues constructed by random forest method 0.827, 0.75 and 0.77, respectively. Finally, we constructed a prognosis model of NSCLC by combining the immunocyte score composed of 8 strongly correlated features of 22 immunocyte features screened by LASSO regression with clinical features. After evaluation and verification, C-index reached 0.71 and the calibration curves of three years and five years were well fitted in the prognosis model, which could accurately predict the degree of prognostic risk. This study aims to provide a new strategy for the diagnosis and prognosis of NSCLC based on the classification model and prognosis model established by immune cell infiltration.
Algorithms
;
Carcinoma, Non-Small-Cell Lung
;
diagnosis
;
physiopathology
;
Humans
;
Lung Neoplasms
;
diagnosis
;
physiopathology
;
Machine Learning
;
Prognosis
4.Inhibition of CD96 enhances interferon-γ secretion by natural killer cells to alleviate lung injury in mice with pulmonary infection.
Jing LI ; Jing ZHENG ; Minda WANG ; Yan ZHANG ; Yifan JIANG ; Xiaofeng ZHANG ; Pu GUO
Journal of Zhejiang University. Medical sciences 2020;40(7):930-935
OBJECTIVE:
To assess the effect of neutralizing CD96 on natural killer (NK) cell functions in mice with pulmonary infection and explore the possible mechanism.
METHODS:
Male BALB/c mice were randomly divided into infection group (Cm group), anti-CD96 treatment group (anti-CD96 group) and control group (=5). In the former two groups, was inoculated intranasal administration to establish mouse models of pulmonary infection, and the mice in the control group received intranasal administration of the inhalation buffer. In anti-CD96 group, the mice were injected with anti-CD96 antibody intraperitoneally at the dose of 250 μg every 3 days after the infection; the mice in Cm group received intraperitoneal injections of saline. The body weight of the mice was recorded daily. The mice were sacrificed 5 days after infection, and CD96 expression was detected by quantitative real-time PCR and Western blotting. HE staining and pathological scores were used to evaluate pneumonia of the mice. The inclusion body forming units (IFUs) were detected in the lung tissue homogenates to assess lung tissue chlamydia load. Flow cytometry and ELISA were used to assess the capacity of the lung NK cells to produce interferon-γ (IFN-γ) and regulate macrophages and Th1 cells.
RESULTS:
infection inhibited CD96 expression in NK cells of the mice. Compared with those in Cm group, the mice in antiCD96 mice showed significantly milder lung inflammation ( < 0.05) and reduced chlamydia load in the lung tissue ( < 0.05). Neutralizing CD96 with anti-CD96 significantly enhanced IFN-γ secretion by the NK cells ( < 0.05) and augmented the immunoregulatory effect of the NK cells shown by enhanced responses of the lung macrophages ( < 0.05) and Th1 cells ( < 0.05).
CONCLUSIONS
Inhibition of CD96 alleviates pneumonia in -infected mice possibly by enhancing IFN-γ secretion by NK cells and augmenting the immunoregulatory effect of the NK cells on innate and adaptive immunity.
Animals
;
Antigens, CD
;
metabolism
;
Chlamydia Infections
;
complications
;
immunology
;
physiopathology
;
Chlamydia muridarum
;
Interferon-gamma
;
genetics
;
metabolism
;
Killer Cells, Natural
;
metabolism
;
Lung Injury
;
etiology
;
genetics
;
prevention & control
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
5.Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics.
Protein & Cell 2020;11(10):707-722
The 2019 novel coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has occurred in China and around the world. SARS-CoV-2-infected patients with severe pneumonia rapidly develop acute respiratory distress syndrome (ARDS) and die of multiple organ failure. Despite advances in supportive care approaches, ARDS is still associated with high mortality and morbidity. Mesenchymal stem cell (MSC)-based therapy may be an potential alternative strategy for treating ARDS by targeting the various pathophysiological events of ARDS. By releasing a variety of paracrine factors and extracellular vesicles, MSC can exert anti-inflammatory, anti-apoptotic, anti-microbial, and pro-angiogenic effects, promote bacterial and alveolar fluid clearance, disrupt the pulmonary endothelial and epithelial cell damage, eventually avoiding the lung and distal organ injuries to rescue patients with ARDS. An increasing number of experimental animal studies and early clinical studies verify the safety and efficacy of MSC therapy in ARDS. Since low cell engraftment and survival in lung limit MSC therapeutic potentials, several strategies have been developed to enhance their engraftment in the lung and their intrinsic, therapeutic properties. Here, we provide a comprehensive review of the mechanisms and optimization of MSC therapy in ARDS and highlighted the potentials and possible barriers of MSC therapy for COVID-19 patients with ARDS.
Adoptive Transfer
;
Alveolar Epithelial Cells
;
pathology
;
Animals
;
Apoptosis
;
Betacoronavirus
;
Body Fluids
;
metabolism
;
CD4-Positive T-Lymphocytes
;
immunology
;
Clinical Trials as Topic
;
Coinfection
;
prevention & control
;
therapy
;
Coronavirus Infections
;
complications
;
immunology
;
Disease Models, Animal
;
Endothelial Cells
;
pathology
;
Extracorporeal Membrane Oxygenation
;
Genetic Therapy
;
methods
;
Genetic Vectors
;
administration & dosage
;
therapeutic use
;
Humans
;
Immunity, Innate
;
Inflammation Mediators
;
metabolism
;
Lung
;
pathology
;
physiopathology
;
Mesenchymal Stem Cell Transplantation
;
methods
;
Mesenchymal Stem Cells
;
physiology
;
Multiple Organ Failure
;
etiology
;
prevention & control
;
Pandemics
;
Pneumonia, Viral
;
complications
;
immunology
;
Respiratory Distress Syndrome, Adult
;
immunology
;
pathology
;
therapy
;
Translational Medical Research
6.Multiple Organ Echinococcosis:Report of One Case and Literature Review.
Dan LIU ; Yan Ping GUO ; Abliz RAYHANGUL ; Qiu Ping WANG ; Qing YANG ; Guang Hui WANG ; Huan Chen SHA ; Chang LIU ; Xiao Feng YANG
Acta Academiae Medicinae Sinicae 2020;42(6):840-844
A patient with multiple-organ echinococcosis suffered from liver echinococcosis,lung echinococcosis,and pelvic echinococcosis successively in the past three decades.From the first operation at 19 years-old,she underwent operations several times due to the recurrence of multiple organ involvement.Echinococcosis is a zoonotic disease.Although the liver usually is the primary site,the disease can also invade many other organs.Diagnosis is typically based on disease history and imaging findings.Thorough removal of the lesions during the first operation is particularly important.Comprehensive evaluations and multi-disciplinary team are helpful in the treatment of patients with multiple organ invasion.
Adult
;
Diagnostic Imaging
;
Echinococcosis/surgery*
;
Female
;
Humans
;
Liver/parasitology*
;
Lung/parasitology*
;
Pelvis/physiopathology*
;
Young Adult
7.Expression of ubiquitin-specific protease 7 in lung tissue of preterm rats after hyperoxia exposure.
Xiao-Yue HUANG ; Yu-Feng QUAN ; Long-Li YAN ; Lin ZHAO
Chinese Journal of Contemporary Pediatrics 2020;22(12):1331-1337
OBJECTIVE:
To study the expression and significance of ubiquitin-specific protease 7 (USP7) and the key factors of the Wnt signaling pathway in the lung tissue of preterm rats after hyperoxia exposure.
METHODS:
A total of 180 preterm neonatal Wistar rats were randomly divided into an air control group, an air intervention group, a hyperoxia control group, and a hyperoxia intervention group, with 45 rats in each group. Lung injury was induced by hyperoxia exposure in the hyperoxia groups. The preterm rats in the intervention groups were given intraperitoneal injection of the USP7 specific inhibitor P5091 (5 mg/kg) every day. The animals were sacrificed on days 3, 5, and 9 of the experiment to collect lung tissue specimens. Hematoxylin-eosin staining was used to observe the pathological changes of lung tissue. RT-PCR and Western blot were used to measure the mRNA and protein expression levels of USP7 and the key factors of the Wnt signaling pathway β-catenin and α-smooth muscle actin (α-SMA) in lung tissue.
RESULTS:
The air groups had normal morphology and structure of lung tissue; on days 3 and 5, the hyperoxia control group showed obvious alveolar compression and disordered structure, with obvious inflammatory cells, erythrocyte diapedesis, and interstitial edema. On day 9, the hyperoxia control group showed alveolar structural disorder and obvious thickening of the alveolar septa. Compared with the hyperoxia control group at the corresponding time points, the hyperoxia intervention group had significantly alleviated disordered structure, inflammatory cell infiltration, and bleeding in lung tissue. At each time point, the hyperoxia groups had a significantly lower radial alveolar count (RAC) than the corresponding air groups (
CONCLUSIONS
Hyperoxia exposure can activate the Wnt/β-catenin signaling pathway, and USP7 may participate in hyperoxic lung injury through the Wnt/β-catenin signaling pathway. The USP7 specific inhibitor P5091 may accelerate the degradation of β-catenin by enhancing its ubiquitination, reduce lung epithelial-mesenchymal transition, and thus exert a certain protective effect against hyperoxic lung injury.
Animals
;
Animals, Newborn
;
Hyperoxia/physiopathology*
;
Lung/physiopathology*
;
Random Allocation
;
Rats
;
Rats, Wistar
;
Thiophenes/pharmacology*
;
Ubiquitin-Specific Peptidase 7/metabolism*
;
Ubiquitin-Specific Proteases
;
Wnt Signaling Pathway
8.Research progress on macrophage in radiation induced lung injury.
Mengyao LI ; Pan LIU ; Yuehai KE ; Xue ZHANG
Journal of Zhejiang University. Medical sciences 2020;49(5):623-628
Radiation-induced lung injury (RILI), including acute radiation pneumonitis and chronic radiation-induced pulmonary fibrosis (RIPF), is a side effect of radiotherapy for lung cancer and esophageal cancer. Pulmonary macrophages, as a kind of natural immune cells maintaining lung homeostasis, play a key role in the whole pathological process of RILI. In the early stage of RILI, classically activated M1 macrophages secrete proinflammatory cytokines to induce inflammation and produce massive reactive oxygen species (ROS) through ROS-induced cascade to further impair lung tissue. In the later stage of RILI, alternatively activated M2 macrophages secrete profibrotic cytokines to promote the development of RIPF. The roles of macrophage in the pathogenesis of RILI and the related potential clinical applications are summarized in this review.
Humans
;
Lung/radiation effects*
;
Lung Injury/physiopathology*
;
Macrophages/metabolism*
;
Radiation Injuries
;
Radiation Pneumonitis/etiology*
;
Radiotherapy/adverse effects*
9.Difference of Lung Function Retention after Segmentectomy and Lobectomy.
Tianyi SUI ; Ao LIU ; Wenjie JIAO
Chinese Journal of Lung Cancer 2019;22(3):178-182
In recent years, the incidence and detection rate of lung cancer have gradually increased, and segmentectomy has been increasingly used to treat early non-small cell lung cancer. Some scholars believe that segmentectomy is more conducive to the preservation of postoperative lung function than lobectomy. Some studies have found that the two surgical methods have little difference in postoperative cost retention. This article deals with segmentectomy and lobectomy. A review of related studies on postoperative pulmonary function changes.
.
Humans
;
Lung
;
physiopathology
;
surgery
;
Lung Neoplasms
;
physiopathology
;
surgery
;
Pneumonectomy
;
adverse effects
;
methods
;
Recovery of Function
10.MRTF-A Regulates the Proliferation and Migration of Non-small Cell Lung Cancer Cells of A549 through HOTAIR.
Kun ZHANG ; Yubin ZHOU ; Gang FENG ; Fuchun ZENG
Chinese Journal of Lung Cancer 2019;22(2):82-89
BACKGROUND:
Non-small cell lung cancer (NSCLC) is a kind of lung cancer, because its high incidence has been concerned. Therefore, it has great significance to reveal the pathogenesis of NSCLC. As a transcriptional regulatory factor, MATF-A plays an important role in the development of multiple tumors, can regulate the migration process of a variety of tumor cells. HOTAIR is a long non-coding RNA (LncRNA) found in recent years, which expresses abnormally in multiple tumors and is involved in the proliferation and migration of multiple tumors. The aim of this study is to explore the role of MRTF-A through HOTAIR to regulate the proliferation and migration of NSCLC cell A549 cell.
METHODS:
We constructed the overexpression plasmid and interfering plasmid of MRTF-A, and detected the effect of MRTF-A on the proliferation and migration of A549 cells by CCK8 and wound healing methods respectively. Then, we designed the siRNA of HOTAIR to detect its effect on the proliferation and migration of A549 cells. Through qRT-PCR, we detected the effect of MRTF-A on HOTAIR expression. Finally, we constructed HOTAIR's promoter, and detect the effect of MRTF-A on HOTAIR promoter activity by luciferase reporter gene test.
RESULTS:
Overexpression of MRTF-A promotes the proliferation and migration of A549 cells, while silent MRTF-A inhibits its proliferation and migration. Next, we found that interfered HOTAIR expression inhibited the proliferation of A549 cells. We found that MRTF-A could influence the expression of HOTAIR and regulate the activity of HOTAIR promoter.
CONCLUSIONS
MRTF-A regulates the proliferation and migration of A549 cell through HOTAIR.
A549 Cells
;
Carcinoma, Non-Small-Cell Lung
;
genetics
;
metabolism
;
physiopathology
;
Cell Movement
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Promoter Regions, Genetic
;
RNA, Long Noncoding
;
genetics
;
metabolism
;
Trans-Activators
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail