1.Effect of electroacupuncture on intestinal flora in COPD rats based on gut-lung axis theory.
Daohong CHEN ; Ying CHEN ; Wenchuan QI ; Qian ZENG ; Ziyang ZHOU ; Ziwen WANG ; Yongjiang FANG ; Shuguang YU ; Ling ZHAO
Chinese Acupuncture & Moxibustion 2025;45(7):967-981
OBJECTIVE:
To observe the effect of electroacupuncture (EA) on the intestinal flora in rats with chronic obstructive pulmonary disease (COPD) and explore its possible mechanism based on the gut-lung axis theory.
METHODS:
A total of 30 male SD rats of SPF grade were randomly divided into a normal control (NC) group, a model group and an EA group, 10 rats in each one. In the model group and the EA group, COPD model was established by intratracheal instillation of lipopolysaccharide combined with cigarette fumigation. In the EA group, EA was applied at bilateral "Feishu" (BL13) and "Zusanli" (ST36), with disperse-dense waves, in frequency of 4 Hz/20 Hz, current of 1-3 mA, 20 min a time, once a day for 14 days continuously. Before and after modeling, as well as after intervention, body weight was observed; after intervention, the lung function indexes (forced expiratory volume in 0.1 second [FEV0.1], FEV0.1/forced vital capacity [FVC]%, forced expiratory volume in 0.3 second [FEV0.3] and FEV0.3/FVC%) were measured, serum levels of inflammatory factors (tumor necrosis factor-α[TNF-α], interleukin-6[IL-6], interleukin-1β[IL-1β] and interleukin-10[IL-10]) were detected by ELISA, histopathology of lung and colon tissues was observed by HE staining, the intestinal flora were analyzed by 16S rRNA, and the correlations between lung function and intestinal flora were analyzed.
RESULTS:
Compared with the NC group, in the COPD group, the body weight and lung function indexes were reduced (P<0.01); the lung and colon tissues were damaged, the mean linear intercept (MLI) of alveolus and inflammatory cell numbers of 100 μm2 in lung tissue were increased (P<0.01); the serum levels of TNF-α, IL-6 and IL-1β were increased (P<0.01, P<0.05), and the serum level of IL-10 was decreased (P<0.01); α-diversity indexes of intestinal flora were increased (P<0.01); the relative abundance of Bacteroidetes, Proteobacteria and Oscillospira, Bacteroides, Coprococcus was increased (P<0.01), the relative abundance of Firmicutes, Actinobacteria, Tenericutes, TM7 and Lactobacillus, Allobaculum, Bifidobacterium, YRC22 was decreased (P<0.01, P<0.05); 31 different expressed metabolic pathways were identified between the two groups. Compared with the COPD group, in the EA group, the body weight and lung function indexes were increased (P<0.01); the damage of lung and colon tissues was improved, the MLI of alveolus was decreased (P<0.05); the serum levels of TNF-α, IL-6 and IL-1β were decreased (P<0.05), and the serum level of IL-10 was increased (P<0.05); α-diversity indexes of intestinal flora were decreased (P<0.01); the relative abundance of Bacteroidetes, Proteobacteria and Oscillospira, Bacteroides, Coprococcus was decreased (P<0.01, P<0.05), the relative abundance of Firmicutes, Actinobacteria, Tenericutes, TM7 and Lactobacillus, Allobaculum, Bifidobacterium, YRC22 was increased (P<0.01); 35 different expressed metabolic pathways were identified between the two groups. The lung function was positive related with Actinobacteria, Tenericutes, TM7 and YRC22, and was negative related with Bacteroidetes, Proteobacteria and Oscillospira, Bacteroides, Coprococcus.
CONCLUSION
EA may ameliorate lung function and tissue injury of COPD by regulating intestinal flora dysbiosis and inflammatory response, suggesting an anti-inflammatory effect mediated via "gut-lung" axis.
Animals
;
Pulmonary Disease, Chronic Obstructive/genetics*
;
Male
;
Electroacupuncture
;
Rats
;
Rats, Sprague-Dawley
;
Lung/metabolism*
;
Gastrointestinal Microbiome
;
Humans
;
Interleukin-6/immunology*
;
Tumor Necrosis Factor-alpha/immunology*
;
Intestines/microbiology*
;
Interleukin-10/immunology*
2.Characteristics of immune response induced by mucosal immunization with recombinant adenovirus of Mycobacterium tuberculosis phosphodiesterase.
Ting DAI ; Yanzhi LU ; Ruihua ZHAO ; Huanhuan NING ; Jian KANG ; Leran HAO ; Jialing LI ; Yuxiao CHANG ; Yinlan BAI
Chinese Journal of Cellular and Molecular Immunology 2025;41(1):1-8
Objective The prevalence of drug-resistant Mycobacterium tuberculosis (Mtb) strains is exacerbating the global burden of tuberculosis (TB), highlighting the urgent need for new treatment strategies for TB. Methods The recombinant adenovirus vaccine expressing cyclic di-adenosine monophosphate (c-di-AMP) phosphodiesterase B (CnpB) (rAd-CnpB), was administered to normal mice via mucosal immunization, either alone or in combination with drug therapy, to treat Mtb respiratory infections in mice.Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of antibodies in serum and bronchoalveolar lavage fluid (BALF). Real-time quantitative PCR was performed to assess the transcription levels of cytokines interferon γ(IFN-γ) and interleukin 10(IL-10) in mouse lungs. Flow cytometry was used to determine the proportions of CD4+ and CD8+ T cell subsets in the lungs and spleens. ELISA was employed to measure the levels of cytokines IFN-γ, IL-2, IL-10, inflammatory factors IL-6, and tumor necrosis factor α (TNF-α) secreted by spleen cells following antigen stimulation. The bacteria loads in the lungs and spleens of Mtb-infected mice were enumerated by plate counting methods. Resluts Intranasal immunization with rAd-CnpB induced high titers of IgG in mouse serum and the production of IgG and IgA in BALF, along with alterations in T lymphocyte subsets in the lungs and spleens. Administration of rAd-CnpB, either alone or in combination with drugs, to Mtb-infected mice significantly increased serum IgG levels as well as IgA and IgG levels in BALF. rAd-CnpB immunization promoted the secretion of CnpB-specific cytokines and inflammatory factors by splenocytes in Mtb-infected mice. However, rAd-CnpB immunotherapy, either alone or combined with drugs, did not significantly affect the bacterial loads in the lungs and spleens of mice with Mtb respiratory infections. Conclusion Mucosal immunization with rAd-CnpB induced significant mucosal, humoral and cellular immune responses in mice, and significantly enhanced CnpB-specific cellular immune responses in Mtb-infected mice.
Animals
;
Adenoviridae/immunology*
;
Mycobacterium tuberculosis/genetics*
;
Mice
;
Female
;
Phosphoric Diester Hydrolases/genetics*
;
Tuberculosis Vaccines/administration & dosage*
;
Tuberculosis/prevention & control*
;
Mice, Inbred BALB C
;
Cytokines
;
Lung/microbiology*
;
Immunization
;
Bronchoalveolar Lavage Fluid/immunology*
;
Immunity, Mucosal
3.Toxicity of lunar dust simulant exposure via the digestive system: Microbiota dysbiosis and multi-organ injury.
Yixiao CHEN ; Yiwei LIU ; Shiyue HE ; Xiaoxiao GONG ; Qiyun CHENG ; Ya CHEN ; Xinyue HU ; Zhenxing WANG ; Hui XIE
Journal of Central South University(Medical Sciences) 2025;50(8):1289-1305
OBJECTIVES:
As early as the Apollo 11 mission, astronauts experienced ocular, skin, and upper airway irritation after lunar dust (LD) was brought into the return cabin, drawing attention to its potential biological toxicity. However, the biological effects of LD exposure through the digestive system remain poorly understood. This study aimed to evaluate the impact of digestive exposure to lunar dust simulant (LDS) on gut microbiota and on the intestine, liver, kidney, lung, and bone in mice.
METHODS:
Eight-week-old female C57BL/6J mice were used. LDS was used as a substitute for lunar dust, and Shaanxi loess was used as Earth dust (ED). Mice were randomly divided into a phosphate buffered saline (PBS) group, an ED group (500 mg/kg), and a LDS group (500 mg/kg), with assessments at days 7, 14, and 28. Mice were gavaged once every 3 days, with body weight recorded before each gavage. At sacrifice, fecal samples were analyzed by 16S ribosomal RNA (rRNA) sequencing; inflammatory cytokine expression [interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha (TNF-α)] in intestinal, liver, and lung tissues was measured by real-time reverse transcription PCR (real-time RT-PCR); hematoxylin and eosin (HE) staining was performed on lung, liver, and intestinal tissues; Periodic acid-Schiff (PAS) staining was used to assess the integrity of the intestinal mucus barrier, and immunohistochemical staining was performed to evaluate the expression of mucin-2 (MUC2). Serum biochemical tests assessed hepatic and renal function. Femoral bone mass was analyzed by micro-computed tomography (micro-CT); osteoblasts and osteoclasts were assessed by osteocalcin (OCN) and tartrate-resistant acid phosphatase (TRAP) staining. Bone marrow immune cell subsets were analyzed by flow cytometry.
RESULTS:
At day 10, weight gain was slowed in ED and LDS groups. At days 22 and 28, body weight in both ED and LDS groups was significantly lower than controls (both P<0.05). LDS exposure increased microbial species richness and diversity at day 7. Compared with the PBS and ED groups, mice in the LDS group showed increased relative abundance of Deferribacterota, Desulfobacterota, and Campylobacterota, and decreased Firmicutes, with increased Helicobacter typhlonius and reduced Lactobacillus johnsonii and Lactobacillusmurinus. HE and PAS staining of the colon showed that mucosal structural disruption and goblet cell loss were more severe in the LDS group. In addition, immunohistochemistry revealed a significant downregulation of MUC2 expression in this group (P<0.05). No obvious pathological alterations were observed in liver HE staining among the 3 groups, and none of the groups exhibited notable hepatic or renal dysfunction. HE staining of the lungs in the ED and LDS groups showed increased perivascular inflammatory cell infiltration (both P<0.05).
CONCLUSIONS
LDS exposure via the digestive route induces gut dysbiosis, intestinal barrier disruption, pulmonary inflammation, bone loss, and bone marrow immune imbalance. These findings indicate that LD exposure poses potential health risks during future lunar missions. Targeted restoration of beneficial gut microbiota may represent a promising strategy to mitigate LD-related health hazards.
Animals
;
Dust
;
Mice
;
Mice, Inbred C57BL
;
Dysbiosis/etiology*
;
Female
;
Gastrointestinal Microbiome/drug effects*
;
Moon
;
Liver/metabolism*
;
Digestive System/microbiology*
;
Lung/metabolism*
;
Kidney
4.Deciphering the Role of VIM, STX8, and MIF in Pneumoconiosis Susceptibility: A Mendelian Randomization Analysis of the Lung-Gut Axis and Multi-Omics Insights from European and East Asian Populations.
Chen Wei ZHANG ; Bin Bin WAN ; Yu Kai ZHANG ; Tao XIONG ; Yi Shan LI ; Xue Sen SU ; Gang LIU ; Yang Yang WEI ; Yuan Yuan SUN ; Jing Fen ZHANG ; Xiao YU ; Yi Wei SHI
Biomedical and Environmental Sciences 2025;38(10):1270-1286
OBJECTIVE:
Pneumoconiosis, a lung disease caused by irreversible fibrosis, represents a significant public health burden. This study investigates the causal relationships between gut microbiota, gene methylation, gene expression, protein levels, and pneumoconiosis using a multi-omics approach and Mendelian randomization (MR).
METHODS:
We analyzed gut microbiota data from MiBioGen and Esteban et al. to assess their potential causal effects on pneumoconiosis subtypes (asbestosis, silicosis, and inorganic pneumoconiosis) using conventional and summary-data-based MR (SMR). Gene methylation and expression data from Genotype-Tissue Expression and eQTLGen, along with protein level data from deCODE and UK Biobank Pharma Proteomics Project, were examined in relation to pneumoconiosis data from FinnGen. To validate our findings, we assessed self-measured gut flora from a pneumoconiosis cohort and performed fine mapping, drug prediction, molecular docking, and Phenome-Wide Association Studies to explore relevant phenotypes of key genes.
RESULTS:
Three core gut microorganisms were identified: Romboutsia ( OR = 0.249) as a protective factor against silicosis, Pasteurellaceae ( OR = 3.207) and Haemophilus parainfluenzae ( OR = 2.343) as risk factors for inorganic pneumoconiosis. Additionally, mapping and quantitative trait loci analyses revealed that the genes VIM, STX8, and MIF were significantly associated with pneumoconiosis risk.
CONCLUSIONS
This multi-omics study highlights the associations between gut microbiota and key genes ( VIM, STX8, MIF) with pneumoconiosis, offering insights into potential therapeutic targets and personalized treatment strategies.
Humans
;
Male
;
East Asian People/genetics*
;
Europe
;
Gastrointestinal Microbiome
;
Lung
;
Macrophage Migration-Inhibitory Factors/metabolism*
;
Mendelian Randomization Analysis
;
Multiomics
;
Pneumoconiosis/microbiology*
;
Intramolecular Oxidoreductases
5.Relationship between Bacteria in the Lower Respiratory Tract/Lung Cancer and the Development of Lung Cancer as well as Its Clinical Application.
Bowen LI ; Zhicheng HUANG ; Yadong WANG ; Jianchao XUE ; Yankai XIA ; Yuan XU ; Huaxia YANG ; Naixin LIANG ; Shanqing LI
Chinese Journal of Lung Cancer 2024;26(12):950-956
Due to the advancement of 16S rRNA sequencing technology, the lower respiratory tract microbiota, which was considered non-existent, has been revealed. The correlation between these microorganisms and diseases such as tumor has been a hot topic in recent years. As the bacteria in the surrounding can infiltrate the tumors, researchers have also begun to pay attention to the biological behavior of tumor bacteria and their interaction with tumors. In this review, we present the characteristic of the lower respiratory tract bacteria and summarize recent research findings on the relationship between these microbiota and lung cancer. On top of that, we also summarize the basic feature of bacteria in tumors and focus on the characteristic of the bacteria in lung cancer. The relationship between bacteria in lung cancer and tumor development is also been discussed. Finally, we review the potential clinical applications of bacterial communities in the lower respiratory tract and lung cancer, and summarize key points of sample collection, sequencing, and contamination control, hoping to provide new ideas for the screening and treatment of tumors.
.
Humans
;
Lung Neoplasms
;
RNA, Ribosomal, 16S/genetics*
;
Bacteria/genetics*
;
Microbiota
;
Respiratory System
;
Lung/microbiology*
6.Protective effect of Streptococcus salivarius K12 against Mycoplasma pneumoniae infection in mice.
Xiaoling SU ; Daoyong LIAO ; Chao LI ; Li CHEN ; Jingyun WANG ; Tian GAN ; Haodang LUO ; Ning WU ; Jun HE
Journal of Southern Medical University 2024;44(12):2300-2307
OBJECTIVES:
To investigate the protective effect of the probiotic bacterium Streptococcus salivarius K12 (K12) against Mycoplasma pneumoniae (Mp) infection in mice.
METHODS:
Forty male BALB/c mice were randomized into normal control group, K12 treatment group, Mp infection group, and K12 pretreatment prior to Mp infection group. The probiotic K12 was administered daily by gavage for 14 days before Mp infection induced by intranasal instillation of Mp. Three days after Mp infection, the mice were euthanized for analysis of bronchoalveolar lavage fluid (BALF) cell counts and serum levels of secretory immunoglobulin A (sIgA), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6). RT-qPCR was performed to detect the P1 and community-acquired respiratory distress syndrome ( CARDS ) toxin of Mp in the lung tissues and the mRNA expressions of TNF-α, IL-6, chemokine 1 (CXCL1), matrix metalloproteinase 9 (MMP9), mucin 5ac (MUC5ac), collagen 3a1 (Col3a1), Toll-like receptor 2 (TLR2) and TLR4; the protein expressions of TLR2 and TLR4 in the lung tissue were detected using Western blotting. Pathological changes in the lung tissue and airway remodeling were examined with HE staining and AB/PAS staining.
RESULTS:
Compared with the Mp-infected mice with PBS treatment, the infected mice with K12 treatment showed significantly lowered mRNA levels of P1 and CARDS in the lung tissue and reduced white blood cell counts in the BALF (P<0.05). In spite of the absence of significant differences in serum levels of inflammatory factors between the two groups, the mRNA expressions of TNF‑α, IL-6, CXCL1, MMP9, MUC5ac and COL3A1 and the mRNA and protein levels of TLR2 and TLR4 in the lung tissues were significantly lower in K12-treated mice, in which AB/PAS staining showed obviously decreased mucus secretion.
CONCLUSIONS
K12 pretreatment can effectively reduce pulmonary inflammatory responses, improve airway remodeling and alleviate lung injury in Mp-infected mice.
Animals
;
Mice
;
Pneumonia, Mycoplasma/metabolism*
;
Mice, Inbred BALB C
;
Toll-Like Receptor 2/metabolism*
;
Mycoplasma pneumoniae
;
Male
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/metabolism*
;
Lung/microbiology*
;
Toll-Like Receptor 4/metabolism*
;
Streptococcus salivarius
;
Probiotics/administration & dosage*
;
Bronchoalveolar Lavage Fluid
;
Matrix Metalloproteinase 9/metabolism*
;
Mucin 5AC/metabolism*
;
Chemokine CXCL1/metabolism*
;
Immunoglobulin A, Secretory/metabolism*
;
Bacterial Toxins
;
Bacterial Proteins
7.Progress of researches on developmental processes and reproduction mode of Pneumocystis.
Chinese Journal of Schistosomiasis Control 2023;35(5):522-528
Pneumocystis, an important opportunistic fungal pathogen that parasitizes in multiple mammalian lungs, may cause life-threatening Pneumocystis pneumonia (PCP) and even death among immunocompromised individuals. With the rapid development of high-throughput sequencing and multi-omics technologies, systematic comparative analyses of genome, transcriptome, and whole-genome sequencing results demonstrate that Pneumocystis is a type of obligate biotrophic fungi, and requires obtaining nutrition from hosts. In addition, sexual reproduction is an essential process for Pneumocystis survival, production and transmission, and asexual reproduction facilitates Pneumocystis survival, which provides new insights into understanding of the whole developmental process of Pneumocystis in the host lung and inter-host transmission of Pneumocystis. This review summarizes the advances in the reproduction mode of Pneumocystis and underlying mechanisms, which provides insights into prevention and treatment of PCP, notably for the prophylaxis against nosocomial transmission of PCP.
Humans
;
Lung/microbiology*
;
Pneumocystis/genetics*
;
Pneumonia, Pneumocystis/microbiology*
8.Clinical factors associated with composition of lung microbiota and important taxa predicting clinical prognosis in patients with severe community-acquired pneumonia.
Sisi DU ; Xiaojing WU ; Binbin LI ; Yimin WANG ; Lianhan SHANG ; Xu HUANG ; Yudi XIA ; Donghao YU ; Naicong LU ; Zhibo LIU ; Chunlei WANG ; Xinmeng LIU ; Zhujia XIONG ; Xiaohui ZOU ; Binghuai LU ; Yingmei LIU ; Qingyuan ZHAN ; Bin CAO
Frontiers of Medicine 2022;16(3):389-402
Few studies have described the key features and prognostic roles of lung microbiota in patients with severe community-acquired pneumonia (SCAP). We prospectively enrolled consecutive SCAP patients admitted to ICU. Bronchoscopy was performed at bedside within 48 h of ICU admission, and 16S rRNA gene sequencing was applied to the collected bronchoalveolar lavage fluid. The primary outcome was clinical improvements defined as a decrease of 2 categories and above on a 7-category ordinal scale within 14 days following bronchoscopy. Sixty-seven patients were included. Multivariable permutational multivariate analysis of variance found that positive bacteria lab test results had the strongest independent association with lung microbiota (R2 = 0.033; P = 0.018), followed by acute kidney injury (AKI; R2 = 0.032; P = 0.011) and plasma MIP-1β level (R2 = 0.027; P = 0.044). Random forest identified that the families Prevotellaceae, Moraxellaceae, and Staphylococcaceae were the biomarkers related to the positive bacteria lab test results. Multivariable Cox regression showed that the increase in α-diversity and the abundance of the families Prevotellaceae and Actinomycetaceae were associated with clinical improvements. The positive bacteria lab test results, AKI, and plasma MIP-1β level were associated with patients' lung microbiota composition on ICU admission. The families Prevotellaceae and Actinomycetaceae on admission predicted clinical improvements.
Acute Kidney Injury/complications*
;
Bacteria/classification*
;
Chemokine CCL4/blood*
;
Community-Acquired Infections/microbiology*
;
Humans
;
Lung
;
Microbiota/genetics*
;
Pneumonia, Bacterial/diagnosis*
;
Prognosis
;
RNA, Ribosomal, 16S/genetics*
9.Efficacy and mechanism of Lianhua Qingwen Capsules(LHQW) on chemotaxis of macrophages in acute lung injury (ALI) animal model.
Qi LI ; Jie YIN ; Qing-Sen RAN ; Qing YANG ; Li LIU ; Zheng ZHAO ; Yu-Jie LI ; Ying CHEN ; Li-Dong SUN ; Ya-Jie WANG ; Xiao-Gang WENG ; Wei-Yan CAI ; Xiao-Xin ZHU
China Journal of Chinese Materia Medica 2019;44(11):2317-2323
This paper was mainly to discuss the potential role and mechanism of Lianhua Qingwen Capsules(LHQW) in inhibiting pathological inflammation in the model of acute lung injury caused by bacterial infection. For in vitro study, the mRNA expression of MCP-1 in RAW264.7 cells and THP-1 cells, the content of MCP-1 in cell supernatant, as well as the effect of LHQW on chemotaxis of macrophages were detected. For in vivo study, mice were randomly divided into 7 groups, including normal group, model group(LPS 5 mg·kg~(-1)), LHQW 300, 600 and 1 200 mg·kg~(-1)(low, middle and high dose) groups, dexamethasone 5 mg·kg~(-1) group and penicillin-streptomycin group. Then, the anal temperature was detected two hours later. Dry weight and wet weight of lung tissues in mice were determined; TNF-α and MCP-1 levels in alveolar lavage fluid and MCP-1 in serum were detected. In addition, the infiltration of alveolar macrophages was also observed and the infiltration count of alveolar macrophages was measured by CCK-8 method. HE staining was also used to observe the inflammatory infiltration of lung tissues in mice. Both of the in vitro and in vivo data consistently have confirmed that: by down-regulating the expression of MCP-1, LHWQ could efficiently decrease the chemotaxis of monocytes toward the pulmonary infection foci, thus blocking the disease development in ALI animal model.
Acute Lung Injury
;
microbiology
;
Animals
;
Bacterial Infections
;
drug therapy
;
Bronchoalveolar Lavage Fluid
;
Capsules
;
Chemokine CCL2
;
metabolism
;
Chemotaxis
;
Drugs, Chinese Herbal
;
pharmacology
;
Humans
;
Lipopolysaccharides
;
Lung
;
Macrophages
;
drug effects
;
Mice
;
RAW 264.7 Cells
;
Random Allocation
;
THP-1 Cells
;
Tumor Necrosis Factor-alpha
;
metabolism
10.Houttuynia cordata polysaccharide alleviated intestinal injury and modulated intestinal microbiota in H1N1 virus infected mice.
Mei-Yu CHEN ; Hong LI ; Xiao-Xiao LU ; Li-Jun LING ; Hong-Bo WENG ; Wei SUN ; Dao-Feng CHEN ; Yun-Yi ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2019;17(3):187-197
Houttuynia cordata polysaccharide (HCP) is extracted from Houttuynia cordata, a key traditional Chinese medicine. The study was to investigate the effects of HCP on intestinal barrier and microbiota in H1N1 virus infected mice. Mice were infected with H1N1 virus and orally administrated HCP at a dosage of 40 mg(kg(d. H1N1 infection caused pulmonary and intestinal injury and gut microbiota imbalance. HCP significantly suppressed the expression of hypoxia inducible factor-1α and decreased mucosubstances in goblet cells, but restored the level of zonula occludens-1 in intestine. HCP also reversed the composition change of intestinal microbiota caused by H1N1 infection, with significantly reduced relative abundances of Vibrio and Bacillus, the pathogenic bacterial genera. Furthermore, HCP rebalanced the gut microbiota and restored the intestinal homeostasis to some degree. The inhibition of inflammation was associated with the reduced level of Toll-like receptors and interleukin-1β in intestine, as well as the increased production of interleukin-10. Oral administration of HCP alleviated lung injury and intestinal dysfunction caused by H1N1 infection. HCP may gain systemic treatment by local acting on intestine and microbiota. This study proved the high-value application of HCP.
Animals
;
Cytokines
;
metabolism
;
Drugs, Chinese Herbal
;
chemistry
;
pharmacology
;
therapeutic use
;
Gastrointestinal Microbiome
;
drug effects
;
Houttuynia
;
chemistry
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
metabolism
;
Inflammation
;
drug therapy
;
pathology
;
Influenza A Virus, H1N1 Subtype
;
pathogenicity
;
Intestinal Mucosa
;
drug effects
;
metabolism
;
microbiology
;
pathology
;
Lung
;
drug effects
;
metabolism
;
pathology
;
Male
;
Mice, Inbred BALB C
;
Orthomyxoviridae Infections
;
drug therapy
;
pathology
;
physiopathology
;
Plant Extracts
;
chemistry
;
Polysaccharides
;
chemistry
;
pharmacology
;
therapeutic use
;
Toll-Like Receptors
;
metabolism
;
Zonula Occludens-1 Protein
;
metabolism

Result Analysis
Print
Save
E-mail