1.A review: drug-drug interactions of epithelial growth factor receptor-tyrosine kinase inhibitors.
Chinese Journal of Oncology 2022;44(7):717-724
Mutations in the epithelial growth factor receptor (EGFR) is a driving factor that causes non-small cell lung carcinoma (NSCLC). The epithelial growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) is a crucial discovery in the treatment of lung cancer, particularly the efficacy of EGFR-TKIs is superior to that of the standard chemotherapy for patients with EGFR mutation-positive advanced NSCLC. Patients with NSCLC use EGFR-TKIs and other medications simultaneously is commonly seen, especially among those with comorbidities, which increases the risk of drug-drug interactions (DDIs) of EGFR-TKIs. The most common mechanisms underlying the DDIs of EGFR-TKIs are modulations of cytochrome P450 (CYP) and drug transporters [including P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP)], as well as gastrointestinal acid-inhibitory drugs [proton pump inhibitors (PPIs) and H(2) receptor antagonists (H(2)RA)]. Inhibitors or inducers of CYP enzymes and drug transporters can inhibit or accelerate the metabolism of EGFR-TKIs, which increase or reduce the exposure of EGFR-TKIs, thereby affect the efficacy and safety of EGFR-TKIs. In addition, PPIs or H(2)RA can decrease the solubility, bioavailability and efficacy of EGFR-TKIs. This review summarizes the mechanisms of DDIs of gefitinib, erlotinib, icotinib, afatinib, dacomitinib and osimertinib; the management recommendations for DDIs of those EGFR-TKIs from the Chinese and global guideline, as well as from the recent pre-clinical and clinical studies, which provide the reference and evidence for managing the combination therapies of EGFR-TKIs and other medications in clinics.
ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics*
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Drug Interactions
;
ErbB Receptors/genetics*
;
Humans
;
Lung Neoplasms/pathology*
;
Mutation
;
Neoplasm Proteins/metabolism*
;
Protein Kinase Inhibitors/adverse effects*
2.Puerarin Inhibits the Proliferation,Invasion,and Migration of Non-small Cell Lung Cancer Cells through Regulating miR-490/Denticleless E3 Ubiquitin Protein Ligase.
Yu-Xin ZHANG ; Zhen-Zhen ZHANG ; Li-Gang ZHAO ; Lin-Lin ZHAO
Acta Academiae Medicinae Sinicae 2022;44(1):91-101
Objective To explore the mechanism of puerarin inhibiting the proliferation,invasion,and migration of non-small cell lung cancer cells. Methods A549 cells were cultured and treated with different concentrations of puerarin.The inhibition rate (IR) on cell proliferation was detected by CCK-8,and qRT-PCR was performed to detect the mRNA levels of miR-490 and denticleless E3 ubiquitin protein ligase(DTL).Double luciferase reporter assay was employed to identify the targets of miR-490 and DTL based on the establishment of NC mimic group,miR-490 mimic group,NC inhibitor group,and miR-490 inhibitor group.The cells treated by 20 μmol/L puerarin were classified into six groups:DMSO,puerarin,puerarin+NC inhibitor,puerarin+miR-490 inhibitor,puerarin+miR-490 inhibitor+Si-NC,and puerarin+miR-490 inhibitor+Si-DTL.Transwell was used to detect cell migration and invasion.Western blotting was performed to detect the protein levels of epithelial-mesenchymal transition-related markers E-cadherin,N-cadherin,and Vimentin. Results With the increase in puerarin concentration,the IR gradually elevated (F=105.375,P<0.001),miR-490 expression gradually increased (F=32.919,P<0.001),and DTL expression gradually decreased (F=116.120,P<0.001).Compared with NC mimic group,miR-490 mimic group had decreased luciferase activity (t=7.762,P=0.016),raised miR-490 mRNA level (t=13.319,P<0.001),and declined DTL mRNA level (t=7.415,P=0.002).Compared with those in NC inhibitor group,miR-490 demonstrated decreased mRNA level (t=9.523,P=0.001) and DTL presented increased mRNA level (t=11.305,P<0.001) in miR-490 inhibitor group.Western blotting showed that the protein level of DTL was higher in NC mimic group (t=7.953,P=0.001) than in miR-490 mimic group and higher in miR-490 inhibitor group than in NC inhibitor group (t=10.552,P<0.001).Compared with DMSO group,puerarin group showed up-regulated mRNA level of miR-490 (t=10.255,P=0.001) while down-regulated mRNA level of DTL (t=6.682,P=0.003).Compared with those in puerarin+NC inhibitor group,the mRNA level of miR-490 declined (t=10.995,P<0.001) while that of DTL raised (t=12.478,P<0.001) in puerarin+miR-490 inhibitor group.The mRNA level of miR-490 had no significant difference between puerarin+miR-490 inhibitor+Si-NC group and puerarin+miR-490 inhibitor+Si-DTL group (t=1.081,P=0.341),and that of DTL was lower in the latter group (t=14.321,P<0.001).The protein level of DTL was higher in puerarin+miR-490 inhibitor group than in puerarin+NC inhibitor group (t=11.423,P<0.001),and lower in puerarin+miR-490 inhibitor+Si-DTL group than in puerarin+miR-490 inhibitor+Si-NC group (t=12.080,P<0.001).Compared with DMSO group,puerarin group showed inhibited cell proliferation (F=129.27,P<0.001).The activity of cell proliferation was higher in puerarin+miR-490 inhibitor group than in puerarin+NC inhibitor group (F=75.12,P<0.001),and higher in puerarin+miR-490 inhibitor+Si-NC group than in puerarin+miR-490 inhibitor+Si-DTL group (F=52.59,P<0.001).Compared with DMSO group,puerarin group had suppressed cell migration (t=8.963,P=0.001).The cell migration ability was higher in puerarin+miR-490 inhibitor group than in puerarin+NC inhibitor group (t=12.117,P<0.001) and higher in puerarin+miR-490 inhibitor+Si-NC group than in puerarin+miR-490 inhibitor+Si-DTL group (t=12.934,P<0.001).Puerarin group showed weakened cell invasion ability compared with DMSO group (t=4.710,P=0.009).The cell invasion ability was higher in puerarin+miR-490 inhibitor group than in puerarin+NC inhibitor group (t=13.264,P<0.001) and lower in puerarin+miR-490 inhibitor+Si-DTL group than in puerarin+miR-490 inhibitor+Si-NC group (t=13.476,P<0.001).Compared with DMSO group,puerarin group showed up-regulated protein level of E-cadherin (t=7.137,P=0.002) while down-regulated protein levels of N-cadherin (t=8.828,P=0.001) and vimentin (t=6.594,P=0.003).Compared with those in puerarin+NC inhibitor group,the protein level of E-cadherin (t=12.376,P<0.001) decreased while those of N-cadherin (t=13.436,P<0.001) and vimentin (t=11.467,P<0.001) increased in puerarin+miR-490 inhibitor group.Compared with puerarin+miR-490 inhibitor+Si-NC group,puerarin+miR-490 inhibitor+Si-DTL group up-regulated the protein level of E-cadherin (t=13.081,P<0.001) while down-regulated the protein levels of N-cadherin (t=10.835,P<0.001) and vimentin (t=11.862,P<0.001). Conclusion Puerarin could inhibit the proliferation,invasion,and migration of non-small cell lung cancer cells by up-regulating miR-490 and down-regulating DTL.
Carcinoma, Non-Small-Cell Lung/pathology*
;
Cell Line, Tumor
;
Cell Movement/drug effects*
;
Cell Proliferation/drug effects*
;
Humans
;
Isoflavones/pharmacology*
;
Lung Neoplasms
;
MicroRNAs/metabolism*
;
Ubiquitin-Protein Ligases/metabolism*
3.Preparation of purified proteins from fresh Pheretima and their inhibitory effect against pulmonary fibrosis in mice.
Shu Yu LI ; Qi Xin YANG ; An Na ZUO ; Lin Hua TIAN ; Jin Hai HUO ; Yan Li MENG ; Qing Fa TANG ; Wei Ming WANG
Journal of Southern Medical University 2022;42(4):618-624
OBJECTIVE:
To develop a convenient method for rapid purification of fresh Pheretima proteins and assess the inhibitory effect of these proteins against pulmonary fibrosis.
METHODS:
The crude extract of fresh Pheretima was obtained by freeze-drying method and then purified by size exclusion chromatography. The composition of the purified proteins was analyzed by mass spectrometry. MRC-5 cells were treated with 5 ng/mL TGF-β1 alone (model group) or in combination with SB431542 (2 μmol/L) or the purified proteins (13.125 μg/mL), and the cytotoxicity of purified proteins and their inhibitory effects on cell proliferation were detected with CCK8 assay. Flow cytometry was used to detect the changes in cell apoptosis, and the cellular expressions of α-SMA, Vimentin, E-cadherin, collagen I, Smad2/3 and P-Smad2/3 were detected using RT-PCR and Western blotting. In the animal experiment, adult male C57BL/6 mice were subjected to intratracheal instillation of bleomycin followed by treatment with the purified proteins (5 mg/mL) for 21 days, after which HE and Masson staining was used to observe the pathological changes in the lung tissue of the mice.
RESULTS:
We successfully obtained purified proteins from fresh Pheretima protein by size exclusion chromatography. Treatment with the purified proteins significantly inhibited TGF-β1-induced proliferation of MRC-5 cells (P < 0.01), reduced the cellular expressions of α-SMA, Vimentin and collagen I (P < 0.001 or P < 0.01), increased the expression of E-cadherin (P < 0.01), and inhibited the expressions of Smad2/3 and P-Smad2/3 (P < 0.001 or P < 0.01). In male C57BL/6 mice models of bleomycin-induced pulmonary fibrosis, treatment with the purified proteins obviously reduced the number of inflammatory cells and fibrotic area in the lungs.
CONCLUSION
The purified proteins from fresh Pheretima obtained by size exclusion chromatography can inhibit pulmonary fibrosis in mice by regulating the TGF-β/ Smad pathway.
Animals
;
Biological Products/pharmacology*
;
Bleomycin/adverse effects*
;
Cadherins/metabolism*
;
Collagen Type I
;
Lung/pathology*
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Oligochaeta/chemistry*
;
Pulmonary Fibrosis/drug therapy*
;
Transforming Growth Factor beta1/metabolism*
;
Vimentin/metabolism*
4.Host metabolism dysregulation and cell tropism identification in human airway and alveolar organoids upon SARS-CoV-2 infection.
Rongjuan PEI ; Jianqi FENG ; Yecheng ZHANG ; Hao SUN ; Lian LI ; Xuejie YANG ; Jiangping HE ; Shuqi XIAO ; Jin XIONG ; Ying LIN ; Kun WEN ; Hongwei ZHOU ; Jiekai CHEN ; Zhili RONG ; Xinwen CHEN
Protein & Cell 2021;12(9):717-733
The coronavirus disease 2019 (COVID-19) pandemic is caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is spread primary via respiratory droplets and infects the lungs. Currently widely used cell lines and animals are unable to accurately mimic human physiological conditions because of the abnormal status of cell lines (transformed or cancer cells) and species differences between animals and humans. Organoids are stem cell-derived self-organized three-dimensional culture in vitro and model the physiological conditions of natural organs. Here we showed that SARS-CoV-2 infected and extensively replicated in human embryonic stem cells (hESCs)-derived lung organoids, including airway and alveolar organoids which covered the complete infection and spread route for SARS-CoV-2 within lungs. The infected cells were ciliated, club, and alveolar type 2 (AT2) cells, which were sequentially located from the proximal to the distal airway and terminal alveoli, respectively. Additionally, RNA-seq revealed early cell response to virus infection including an unexpected downregulation of the metabolic processes, especially lipid metabolism, in addition to the well-known upregulation of immune response. Further, Remdesivir and a human neutralizing antibody potently inhibited SARS-CoV-2 replication in lung organoids. Therefore, human lung organoids can serve as a pathophysiological model to investigate the underlying mechanism of SARS-CoV-2 infection and to discover and test therapeutic drugs for COVID-19.
Adenosine Monophosphate/therapeutic use*
;
Alanine/therapeutic use*
;
Alveolar Epithelial Cells/virology*
;
Antibodies, Neutralizing/therapeutic use*
;
COVID-19/virology*
;
Down-Regulation
;
Drug Discovery
;
Human Embryonic Stem Cells/metabolism*
;
Humans
;
Immunity
;
Lipid Metabolism
;
Lung/virology*
;
RNA, Viral/metabolism*
;
SARS-CoV-2/physiology*
;
Virus Replication/drug effects*
5.Subchronic Oral Cadmium Exposure Exerts both Stimulatory and Suppressive Effects on Pulmonary Inflammation/Immune Reactivity in Rats.
Jelena KULAS ; Marina NINKOV ; Dina TUCOVIC ; Aleksandra POPOV ALEKSANDROV ; Mirela UKROPINA ; Maja CAKIC MILOSEVIC ; Jelena MUTIC ; Milena KATARANOVSKI ; Ivana MIKROV
Biomedical and Environmental Sciences 2019;32(7):508-519
OBJECTIVE:
The aim of this study is to investigate the effects of oral cadmium (Cd) ingestion on the pulmonary immune response.
METHODS:
Determination of Cd content in lungs and histopathological evaluation of the tissue was performed in rats following 30-day oral Cd administration (5 and 50 mg/L). Antioxidant enzyme defense (superoxide dismutase and catalase), cell infiltration, and production of tumor necrosis factor (TNF) and interferon (IFN)-γ, as well as the activity of myeloperoxidase (MPO), nitric oxide (NO), and various cytokines [interleukin (IL)-1β, IL-6, IL-10, and IL-17] were investigated.
RESULTS:
Cd caused tissue damage and cell infiltration in the lungs, and this damage was more pronounced at higher doses. Cd deposition resulted in lung inflammation characterized by a dose-dependent IL-1β increase in lung homogenates, increased TNF levels at both doses, and IL-6 stimulation at low doses with inhibition observed at higher doses. Cd exerted differential effects on lung leukocytes isolated by enzyme digestion, and these effects were characterized by a lack of change in the production of reactive oxygen and nitrogen species, an inhibition of IL-1β and TNF, and stimulation of MPO and IFN-γ. The higher capacity of Cd-exposed lung cells to respond to the opportunistic pathogen Staphylococcus epidermidis was demonstrated in vitro.
CONCLUSION
The potential of ingested Cd to exert both proinflammatory and immunosuppressive effects on pulmonary tissue inflammation and immune reactivity highlights the complex immunomodulatory actions of this metal.
Administration, Oral
;
Animals
;
Cadmium
;
administration & dosage
;
toxicity
;
Leukocytes
;
metabolism
;
Lung
;
drug effects
;
immunology
;
pathology
;
Male
;
Rats
;
Staphylococcus epidermidis
;
Toxicity Tests, Subchronic
6.Protective Effect of Angiotensin (1-7) on Silicotic Fibrosis in Rats.
Bo Nan ZHANG ; Hong XU ; Xue Min GAO ; Gui Zhen ZHANG ; Xin ZHANG ; Fang YANG
Biomedical and Environmental Sciences 2019;32(6):419-426
OBJECTIVE:
Silicosis, caused by inhalation of silica dust, is the most serious occupational disease in China and the aim of present study was to explore the protective effect of Ang (1-7) on silicotic fibrosis and myofibroblast differentiation induced by Ang II.
METHODS:
HOPE-MED 8050 exposure control apparatus was used to establish the rat silicosis model. Pathological changes and collagen deposition of the lung tissue were examined by H.E. and VG staining, respectively. The localizations of ACE2 and α-smooth muscle actin (α-SMA) in the lung were detected by immunohistochemistry. Expression levels of collagen type I, α-SMA, ACE2, and Mas in the lung tissue and fibroblasts were examined by western blot. Levels of ACE2, Ang (1-7), and Ang II in serum were determined by ELISA. Co-localization of ACE2 and α-SMA in fibroblasts was detected by immunofluorescence.
RESULTS:
Ang (1-7) induced pathological changes and enhanced collagen deposition in vivo. Ang (1-7) decreased the expressions of collagen type I and α-SMA and increased the expressions of ACE2 and Mas in the silicotic rat lung tissue and fibroblasts stimulated by Ang II. Ang (1-7) increased the levels of ACE2 and Ang (1-7) and decreased the level of Ang II in silicotic rat serum. A779 enhanced the protective effect of Ang (1-7) in fibroblasts stimulated by Ang II.
CONCLUSION
Ang (1-7) exerted protective effect on silicotic fibrosis and myofibroblast differentiation induced by Ang II by regulating ACE2-Ang (1-7)-Mas axis.
Actins
;
metabolism
;
Angiotensin I
;
blood
;
pharmacology
;
therapeutic use
;
Angiotensin II
;
blood
;
Animals
;
Animals, Newborn
;
Cell Differentiation
;
drug effects
;
Cells, Cultured
;
Collagen Type I
;
metabolism
;
Disease Models, Animal
;
Lung
;
metabolism
;
pathology
;
Myofibroblasts
;
drug effects
;
Peptide Fragments
;
blood
;
pharmacology
;
therapeutic use
;
Peptidyl-Dipeptidase A
;
metabolism
;
Rats, Wistar
;
Silicosis
;
metabolism
;
pathology
;
prevention & control
7.Salidroside Reduces PDE2A Expression by Down-regulating p53 in Human Embryonic Lung Fibroblasts.
Wen Min XING ; Sha Sha CHEN ; San Ying WANG ; Wen Yan GAO ; Xiao Qing WAN ; Hui Li SU ; Yi YANG ; Jing ZHANG ; Jing YAN ; Gen Xiang MAO
Biomedical and Environmental Sciences 2019;32(2):140-143
Cells, Cultured
;
Cyclic Nucleotide Phosphodiesterases, Type 2
;
antagonists & inhibitors
;
metabolism
;
Fibroblasts
;
drug effects
;
metabolism
;
Glucosides
;
pharmacology
;
Humans
;
Lung
;
cytology
;
embryology
;
Phenols
;
pharmacology
;
Phosphodiesterase Inhibitors
;
pharmacology
;
Tumor Suppressor Protein p53
;
metabolism
8.The protective effects of vitamin E on lung injury caused by high temperature and PM in COPD rats.
Jiang-Tao LIU ; Bin LUO ; Xiao-Tao HE ; Lan-Yu LI ; Sheng-Gang XU
Chinese Journal of Applied Physiology 2019;35(4):293-296
OBJECTIVE:
To investigate the effects of vitamin E on the respiratory function impairment in rats with chronic obstructive pulmonary disease (COPD) after exposed to high temperature and PM.
METHODS:
Fifty-four 7-week-old SPF male Wistar rats were randomly divided into 9 experimental groups (n=6). The rat COPD model was established by lipopolysaccharide (LPS) and smoke exposure. After modeled, the rats were tracheal instilled with PM (0 mg/ml, 3.2 mg/ml) and intraperitoneally injected with vitamin E at the dose of 40 mg/kg (20 mg/ml). Part of rats (high temperature groups) were then exposed to high temperature (40℃), once (8 h) a day for three consecutive days. After the last exposure, the lung function of rats was detected. The expression levels of inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α) and monocyte chemotactic protein-1 (MCP-1) were detected by corresponding ELISA kits.
RESULTS:
Compared with the control group, exposure of high temperature and PM could inhibit the lung function of COPD rats significantly (P<0.05); the level of MCP-1 was increased significantly in PM-exposure groups (P<0.05); iNOS was increased significantly in the groups of high temperature (P<0.05). Compared with the single-PM exposure groups, TNF-α in lung was decreased in the normal temperature health group and high temperature COPD group (P<0.05) after treated with vitamin E; MCP-1 was decreased in all vitamin E-treated groups (P<0.05); the decreased iNOS only appeared in the group of high temperature with vitamin E treatment.
CONCLUSION
High temperature and PM could aggravate the inflammation of COPD rats. As an antioxidant, vitamin E may protect the lung from the damage effects.
Animals
;
Chemokine CCL2
;
metabolism
;
Hot Temperature
;
adverse effects
;
Lung
;
physiopathology
;
Male
;
Nitric Oxide Synthase Type II
;
metabolism
;
Particulate Matter
;
adverse effects
;
Pulmonary Disease, Chronic Obstructive
;
drug therapy
;
Random Allocation
;
Rats
;
Rats, Wistar
;
Tumor Necrosis Factor-alpha
;
metabolism
;
Vitamin E
;
pharmacology
9.Effects of Shenmai injection on the expression of p38MAPK and the apoptosis-related genes in lung injury induced by intestinal ischemia/reperfusion in rats.
Jia-Han ZHAO ; Yu-Han JIA ; Ya-Ting TANG ; Yi-Xin LIN ; Yan-Lei WANG
Chinese Journal of Applied Physiology 2019;35(1):65-68
OBJECTIVE:
To observe the effects of Shenmai injection(SM) on p38MAPK and the apoptosis-related genes in lung injury induced by intestinal ischemia reperfusion (I/R) in rats and to investigate the protective mechanism of SM.
METHODS:
Rat model of intestinal I/R injury was established with clamping of the superior mesenteric artery (SMA) for 60 min and then clamping was relieved for 60 min. Twenty-four SD rats were randomly divided into three groups with eight rats in each: control group, intestinal ischemia/reperfusion group(I/R group), Shenmai injection treated group (SM+I/R group). Lung wet/dry weight ratio(W/D), the contents of phosphatidylcholine (PC) and total phospholipid(TPL) which are the major ingredients of pulmonary surfactant were measured, as well as the expression levels of p38MAPK, Bcl-2 and Bax proteins in lung tissue were examined by using immunohistochemical method.
RESULTS:
Compared with control group, lung W/D was significantly increased, the contents of PC and TPL were significantly decreased, the protein expression levels of p38MAPK, Bcl-2 and Bax were significantly increased in I/R group (all P<0.01). But Bax protein expression was much greater than Bcl-2 protein expression, the ratio of Bcl-2 to Bax were significantly decreased in I/R group than that in control group (P<0.01). Compared with I/R group, lung W/D was significantly decreased, while the contents of PC and TPL were significantly increased, the p38MAPK and Bax protein expression levels were significantly decreased in SM+I/R group (all P<0.01); both Bcl-2 protein expression and the ratio of Bcl-2 to Bax were significantly increased in SM+I/R group than those in I/R group (P<0.01). The correlation analysis indicated that the expression level of p38MAPK protein in lung tissue was negatively correlated with the contents of PC and the ratio of Bcl-2 to Bax (r is -0.787 and -0.731, all P<0.01).
CONCLUSION
SM can protect the lung injury induced by intestinal I/R injury, which may be mediated by inhibiting the activation of p38MAPK, improving the ratio of Bcl-2 to Bax to inhibit lung apoptosis.
Animals
;
Apoptosis
;
Drug Combinations
;
Drugs, Chinese Herbal
;
pharmacology
;
Lung Injury
;
drug therapy
;
genetics
;
Proto-Oncogene Proteins c-bcl-2
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Reperfusion Injury
;
complications
;
bcl-2-Associated X Protein
;
p38 Mitogen-Activated Protein Kinases
;
drug effects
;
metabolism
10.Cardamine komarovii flower extract reduces lipopolysaccharide-induced acute lung injury by inhibiting MyD88/TRIF signaling pathways.
Qi CHEN ; Ke-Xin ZHANG ; Tai-Yuan LI ; Xuan-Mei PIAO ; Mei-Lan LIAN ; Ren-Bo AN ; Jun JIANG
Chinese Journal of Natural Medicines (English Ed.) 2019;17(6):461-468
In the present study, we investigated anti-inflammatory effect of Cardamine komarovii flower (CKF) on lipopolysaccharide (LPS)-induced acute lung injury (ALI). We determined the effect of CKF methanolic extracts on LPS-induced pro-inflammatory mediators NO and prostaglandin E2 (PGE2), production of pro-inflammatory cytokines (IL-1β, TNF-α, and IL-6), and related protein expression levels of MyD88/TRIF signaling pathways in peritoneal macrophages (PMs). Nuclear translocation of NF-κB-p65 was analyzed by immunofluorescence. For the in vivo experiments, an ALI model was established to detect the number of inflammatory cells and inflammatory factors (IL-1β, TNF-α, and IL-6) in bronchoalveolar lavage fluid (BALF) of mice. The pathological damage in lung tissues was evaluated through H&E staining. Our results showed that CKF can decrease the production of inflammatory mediators, such as NO and PGE2, by inhibiting their synthesis-related enzymes iNOS and COX-2 in LPS-induced PMs. In addition, CKF can downregulate the mRNA levels of IL-1β, TNF-α, and IL-6 to inhibit the production of inflammatory factors. Mechanism studies indicated that CKF possesses a fine anti-inflammatory effect by regulating MyD88/TRIF dependent signaling pathways. Immunocytochemistry staining showed that the CKF extract attenuates the LPS-induced translocation of NF-kB p65 subunit in the nucleus from the cytoplasm. In vivo experiments revealed that the number of inflammatory cells and IL-1β in BALF of mice decrease after CKF treatment. Histopathological observation of lung tissues showed that CKF can remarkably improve alveolar clearance and infiltration of interstitial and alveolar cells after LPS stimulation. In conclusion, our results suggest that CKF inhibits LPS-induced inflammatory response by inhibiting the MyD88/TRIF signaling pathways, thereby protecting mice from LPS-induced ALI.
Acute Lung Injury
;
chemically induced
;
drug therapy
;
genetics
;
metabolism
;
Adaptor Proteins, Vesicular Transport
;
genetics
;
metabolism
;
Animals
;
Anti-Inflammatory Agents
;
administration & dosage
;
chemistry
;
Cardamine
;
chemistry
;
Cyclooxygenase 2
;
genetics
;
metabolism
;
Female
;
Flowers
;
chemistry
;
Humans
;
Lipopolysaccharides
;
adverse effects
;
Male
;
Mice
;
Myeloid Differentiation Factor 88
;
genetics
;
metabolism
;
NF-kappa B
;
genetics
;
metabolism
;
Nitric Oxide Synthase Type II
;
genetics
;
metabolism
;
Plant Extracts
;
administration & dosage
;
chemistry
;
Signal Transduction
;
drug effects
;
Tumor Necrosis Factor-alpha
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail