1.miR-185-5p alleviates the inflammatory response of acute gouty arthritis by inhibiting of IL-1β.
Nan HOU ; Xianghui MA ; Wei ZHOU ; Min YUAN ; Liming XU ; Huanxia SUN ; Yifan LIU ; Lining LIU ; Yanjun SHI ; Chunxian LI ; Yanfa FU
Chinese Journal of Cellular and Molecular Immunology 2024;40(1):51-57
Objective To investigate the relationship between interleukin-1β (IL-1β) and miR-185-5p in the process of joint injury in acute gouty arthritis (AGA). Methods The serum miR-185-5p levels of 89 AGA patients and 91 healthy volunteers were detected by real-time quantitative PCR. The correlation between miR-185-5p expression level and VAS score or IL-1β expression level was evaluated by Pearson correlation coefficient method. Receiver operating characteristic (ROC) curve was used to evaluate the diagnostic value of miR-185-5p in AGA. THP-1 cells were induced by sodium urate (MSU) to construct an in vitro acute gouty inflammatory cell model. After the expression level of miR-185-5p in THP-1 cells was upregulated or downregulated by transfection of miR-185-5p mimics or inhibitors in vitro, inflammatory cytokines of THP-1 cells, such as IL-1β, IL-8 and tumor necrosis factor α (TNF-α), were detected by ELISA. The luciferase reporter gene assay was used to determine the interaction between miR-185-5p and the 3'-UTR of IL-1β. Results Compared with the healthy control group, the expression level of serum miR-185-5p in AGA patients was significantly reduced. The level of serum miR-185-5p was negatively correlated with VAS score and IL-1β expression level. The area under the curve (AUC) was 0.905, the sensitivity was 80.17% and the specificity was 83.52%. Down-regulation of miR-185-5p significantly promoted the expression of IL-1β, IL-8 and tumor necrosis factor (TNF-α), while overexpression of miR-185-5p showed the opposite results. Luciferase reporter gene assay showed that IL-1β was the target gene of miR-185-5p, and miR-185-5p negatively regulated the expression of IL-1β. Conclusion miR-185-5p alleviates the inflammatory response in AGA by inhibiting IL-1β.
Humans
;
3' Untranslated Regions
;
Arthritis, Gouty/genetics*
;
Interleukin-1beta/genetics*
;
Interleukin-8
;
Luciferases
;
MicroRNAs/genetics*
;
Tumor Necrosis Factor-alpha
2.Development and optimization of a cell screening system for farnesoid X receptor agonist.
Zhimin ZHENG ; Xiaoxia HUANG ; Biying PANG ; Nana HUANG ; Bo KONG ; Xin LI ; Wenting XIONG
Chinese Journal of Biotechnology 2023;39(1):359-371
This study aims to develop an improved cell screening system for farnesoid X receptor (FXR) agonists based on a dual luciferase reporter gene system. FXR response element (FXRE) fragments from FXR target genes were cloned and inserted into upstream of firefly luciferase (Luc) gene in the plasmid pGL4-luc2P-Hygro. In combination with the internal reference plasmid containing renilla luciferase, a dual luciferase reporter gene system was developed and used for high throughput screening of FXR agonists. After studying the effects of over-expression of RXR, mouse or human FXR, various FXRE fragments, and different ratio of FXR plasmid amount to reporter gene plasmid, induction efficiency of the screening system was optimized by the known FXR agonist GW4064, and Z factor for the system reached 0.83 under optimized conditions. In summary, an improved cell screening system based on double luciferase reporter gene detection system was developed to facilitate the discovery of FXR agonists, where a new enhanced FXRE element was formed by a superposition of multiple FXRE fragments from FXR target genes, instead of a superposition of traditional IR-1 (inverted repeats-1) fragments.
Humans
;
Mice
;
Animals
;
Transcription Factors/genetics*
;
DNA-Binding Proteins/genetics*
;
Receptors, Cytoplasmic and Nuclear/genetics*
;
Genes, Reporter
;
Luciferases/genetics*
3.Effect of MiR-424-5p on the Drug Resistance of Diffuse Large B-Cell Lymphoma Cells by Regulating PD-1/PD-L1 Signaling Pathway.
Jun YUAN ; Hu HAN ; Wei DONG ; Rui-Cang WANG ; Hong-Ling HAO
Journal of Experimental Hematology 2023;31(1):96-103
OBJECTIVE:
To explore the effect of microRNA-424-5p (miR-424-5p) on the drug resistance of diffuse large B-cell lymphoma (DLBCL) cells by regulating the programmed death receptor-1 (PD-1)/programmed death ligand-1 (PD-L1) signaling pathway.
METHODS:
Human DLBCL cell line CRL2631 cells were induced to construct CRL2631-CHOP resistant cell line. RT-qPCR and Western blot were used to detect the expression levels of MiR-424-5p, PD-L1 mRNA and protein, and multidrug resistance gene-1 (MDR-1) protein in CRL2631 cells and CRL2631-CHOP cells, respectively. The target genes of MiR-424-5p was verified by dual luciferase reporter assay. The miRNA simulation/interference technology and thiazole blue (MTT) method were used to detect the resistance of CRL2631 cells and CRL2631-CHOP cells to CHOP.
RESULTS:
Compared with CRL2631 cells, the drug resistance of CRL2631-CHOP cells to CHOP and the levels of MDR-1 protein (P<0.05), PD-L1 mRNA and protein in the cells were significantly increased (both P<0.001), while the relative level of MiR-424-5p was significantly reduced (P<0.001). The result of the dual luciferase reporter assay showed that PD-L1 was the direct downstream target gene of MiR-424-5p (P<0.001). After transfection of MiR-424-5p inhibitor, the resistance of CRL2631 cells to CHOP drugs increased, and the expression level of MDR-1 protein (P<0.01), PD-L1 mRNA and protein also increased significantly (both P<0.01). After transfection of MiR-424-5p mimics, the resistance of CRL2631-CHOP cells to CHOP drugs decreased, and the expression level of MDR-1 protein (P<0.001), PD-L1 mRNA and protein also decreased significantly (both P<0.001). Overexpression of PD-L1 could reverse the inhibitory effect of upregulating MiR-424-5p on PD-L1 (P<0.001).
CONCLUSION
Down-regulation of MiR-424-5p enhances the drug resistance of DLBCL cells by regulating the PD-1/PD-L1 signaling pathway.
Humans
;
B7-H1 Antigen/metabolism*
;
Cell Line, Tumor
;
Drug Resistance
;
Luciferases
;
Lymphoma, Large B-Cell, Diffuse/pathology*
;
MicroRNAs/metabolism*
;
Programmed Cell Death 1 Receptor
;
RNA, Messenger
;
Signal Transduction
4.MiR-30e-5p overexpression promotes proliferation and migration of colorectal cancer cells by activating the CXCL12 axis via downregulating PTEN.
Ke WEI ; Jiwen SHI ; Yuhan XIAO ; Wenrui WANG ; Qingling YANG ; Changjie CHEN
Journal of Southern Medical University 2023;43(7):1081-1092
OBJECTIVE:
To investigate the regulatory effects of miR-30e-5p on biological behaviors of colorectal cancer cells and the role of PTEN/CXCL12 axis in mediating these effects.
METHODS:
Bioinformatic analysis was performed to explore the differential expression of miR-30e-5p between colorectal cancer tissues and normal tissues. RT-qPCR was used to detect the differential expression of miR-30e-5p in intestinal epithelial cells and colorectal cancer cells. Bioinformatics and dual luciferase assay were used to predict and validate the targeting relationship between miR-30e-5p and PTEN. Human and murine colorectal cancer cell lines were transfected with miR-30e-5p mimics, miR-30e-5p inhibitor, miR-30e-5p mimics+LV-PTEN, or miR-30e-5p inhibitor + si-PTEN. The changes in biological behaviors of the cells were detected using plate clone formation assay, CCK-8 assay, flow cytometry, scratch healing and Transwell assays. PTEN and CXCL12 expressions in the cancer cells were detected by Western blotting. The effects of miR-30e-5p inhibitor on colorectal carcinogenesis and development were observed in nude mice.
RESULTS:
Bioinformatic analysis showed that miR-30e-5p expression was significantly elevated in colorectal cancer tissues compared with the adjacent tissue (P < 0.01). Higher miR-30e-5p expression was detected in colorectal cancer cell lines than in intestinal epithelial cells (P < 0.01). Dual luciferase assay confirmed the targeting relationship between miR-30e-5p and PTEN (P < 0.05). Transfection with miR-30e-5p mimics significantly enhanced proliferation and metastasis and inhibited apoptosis of the colorectal cancer cells (P < 0.05), and co-transfection with LV-PTEN obviously reversed these changes (P < 0.05). MiR-30e-5p mimics significantly inhibited PTEN expression and enhanced CXCL12 expression in the cancer cells (P < 0.01), and miR-30e-5p inhibitor produced the opposite effect. Transfection with miR-30e-5p inhibitor caused cell cycle arrest in the cancer cells, which was reversed by co-transfection with si-PTEN (P < 0.05). In the in vivo experiments, the colorectal cancer cells transfected with miR-30e-5p inhibitor showed significantly lowered tumorigenesis.
CONCLUSION
Overexpression of miR-30e-5p promotes the malignant behaviors of colorectal cancer cells by downregulating PTEN to activate the CXCL12 axis.
Humans
;
Animals
;
Mice
;
MicroRNAs/metabolism*
;
Cell Line, Tumor
;
Cell Proliferation/physiology*
;
Mice, Nude
;
Cell Movement/physiology*
;
Colorectal Neoplasms/pathology*
;
Luciferases/metabolism*
;
Gene Expression Regulation, Neoplastic
;
PTEN Phosphohydrolase/metabolism*
;
Chemokine CXCL12/metabolism*
5.miR-181b-5p promotes cell proliferation and induces apoptosis in human acute myeloid leukemia by targeting PAX9.
Bin LI ; Qianshan TAO ; Xueying HU ; Tan LI ; Yangyi BAO
Chinese Journal of Cellular and Molecular Immunology 2023;39(12):1074-1082
Objective To investigate the effects of miR-181b-5p on cells proliferation and apoptosis in acute myeloid leukemia (AML) by targeting paired box 9 (PAX9). Methods The relationship between expression level of PAX9 and prognosis in AML patients was analyzed by gene expression profiling interactive analysis (GEPIA) database and The Cancer Genome Atlas (TCGA) database. Kasumi-1 and AML5 cells were transfected with empty vector (Vector group) or PAX9 (PAX9 group). The proliferation activity was detected by CCK-8 assay, and cells cycle and apoptosis were detected by flow cytometry. Expressions of cyclin-dependent kinase 2 (CDK2), cyclin B1 (CCNB1), B-cell lymphoma 2 (Bcl2) and Bcl2-associated X protein (BAX) were detected by Western blot analysis. The targeted microRNA (miRNA) by PAX9 was predicted by bioinformatics analysis, and the targeted effect was verified by luciferase reporter assay. The level of PAX9 mRNA was detected by real-time quantitative PCR, and expression of PAX9 protein was detected by Western blot analysis. Kasumi-1 and AML5 cells were transfected with miR-NC (miR-NC group) or miR-181b-5p (miR-181b-5p group). The cells were further transfected with PAX9 (miR-181b-5p combined with PAX9 group) in miR-181b-5p group. The proliferation, cycle and apoptosis of cells were detected by the above methods.Results GEPIA and TCGA databases showed that the expression of PAX9 was down-regulated in AML patients, which was correlated with poor prognosis. In Kasumi-1 and AML5 cells, compared with Vector group, proliferation activity of cells, percentage of cells in S phase, and expressions of CDK2, CCNB1 and Bcl2 proteins were decreased, while percentage of cells in G0/G1 phase, apoptosis rate and the expression of BAX protein were increased in PAX9 group. It was confirmed by double luciferase reporter assay that PAX9 was the target gene of miR-181b-5p. Compared with miR-NC group, proliferation activity of cells, percentage of cells in S phase, and expressions of CDK2, CCNB1 and Bcl2 proteins were increased, while percentage of cells in G0/G1 phase, apoptosis rate and the expression of BAX protein were decreased in miR-181b-5p group. Compared with miR-181b-5p group, proliferation activity of cells, percentage of cells in S phase, and expressions of CDK2, CCNB1 and Bcl2 proteins were decreased, while percentage of cells in G0/G1 phase, apoptosis rate and the expression of BAX protein were increased in miR-181b-5p combined with PAX9 group. Conclusion The miR-181b-5p can promote the proliferation of AML cells and delay apoptosis by inhibiting PAX9.
Humans
;
Apoptosis/genetics*
;
bcl-2-Associated X Protein
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Leukemia, Myeloid, Acute/pathology*
;
Luciferases
;
MicroRNAs/metabolism*
;
PAX9 Transcription Factor/genetics*
6.Effects of circ-SFMBT2 on Proliferation, Migration and Invasion of Acute Myeloid Leukemia Cells by Regulating miR-491-5p/HOXA9 Axis.
Yan LI ; Li-Huan SHI ; Xin XIE ; Peng-Kai FAN
Journal of Experimental Hematology 2023;31(6):1599-1607
OBJECTIVE:
To explore the effects and molecular mechanism of circ-SFMBT2 on the proliferation, migration and invasion of acute myeloid leukemia (AML) cells.
METHODS:
Bone marrow samples from 35 pediatric AML patients and 35 healthy controls in Henan Provincial Children's Hospital from April 2015 to April 2017 and human bone marrow stromal cell lines (HS-5) and AML cell lines (HL-60, THP-1, U-937 and Kasumi-1) were collected. The expressions of circ-SFMBT2, miR-491-5p and homeobox A9 (HOXA9) in bone marrow samples and cells were detected by RT-qPCR and Western blot. The Pearson method was used to analyze the correlation of circ-SFMBT2, miR-491-5p and HOXA9 mRNA expression levels in bone marrow samples of AML patients. HL-60 cells were cultured in vitro and divided into 5 groups: Control, si-NC, si-circ-SFMBT2, si-circ-SFMBT2+anti-NC and si-circ-SFMBT2+anti-miR-491-5p, HL-60 cells were transfected with si-NC, si-circ-SFMBT2, anti-NC, and miR-491-5p inhibitor with Lipofectamine™ 3000. RT-qPCR and Western blot were performed to detect the expression levels of circ-SFMBT2, miR-491-5p and HOXA9 in cells of each group. The proliferation activity of HL-60 cells in each group was detected by CCK-8 assay at 24, 48 and 72 h after transfection, respectively. The apoptosis rate was detected by flow cytometry. The migration and invasion abilities of cells were detected by Transwell assay. The regulatory roles of circ-SFMBT2, miR-491-5p and HOXA9 in AML cells were verified by dual-luciferase reporter gene assay, RNA pull-down and RNA-binding protein immunoprecipitation (RIP) experiments.
RESULTS:
The expression levels of circ-SFMBT2 and HOXA9 mRNA were increased in bone marrow samples and cell lines (HL-60, THP-1, U-937 and Kasumi-1) of children with AML (P <0.001), while the expression level of miR-491-5p was significantly decreased (P <0.001). Pearson correlation analysis showed that the expression levels of circ-SFMBT2 and miR-491-5p in bone marrow samples of AML children were negatively correlated (r =-0.905), miR-491-5p was also negatively correlated with HOXA9 mRNA (r =-0.930), while the expression levels of HOXA9 mRNA and circ-SFMBT2 was positively correlated (r =0.911). The overall survival rate of AML children with high expression of circ-SFMBT2 was significantly decreased than those with low expression of circ-SFMBT2 (P <0.05). Silencing of circ-SFMBT2 could greatly up-regulate the expression of miR-491-5p, decrease the expression of HOXA9, inhibit the proliferation, migration and invasion of AML cells, and promote cell apoptosis (P <0.05). Down-regulation of miR-491-5p expression greatly attenuated the inhibitory effects of circ-SFMBT2 silencing on cell proliferation, migration and invasion (P <0.05). Dual-luciferase reporter gene assay, RNA pull-down and RIP experiments confirmed that circ-SFMBT2 could target miR-491-5p and negatively regulate the expression of miR-491-5p in AML, and HOXA9 was the target of miR-491-5p.
CONCLUSION
Silencing of circ-SFMBT2 may inhibit the proliferation, migration and invasion of AML cells by regulating the miR-491-5p/HOXA9 axis.
Child
;
Humans
;
Cell Line, Tumor
;
Cell Proliferation
;
Genes, Homeobox
;
HL-60 Cells
;
Leukemia, Myeloid, Acute
;
Luciferases
;
MicroRNAs
;
Repressor Proteins
;
RNA, Messenger
;
RNA, Circular/genetics*
7.Effect of miR-125b on T Cell Activation in Aplastic Anemia by Targetting B7-H4.
Xiao LIU ; Xue-Xia WANG ; Hong-Kun SUN ; Na GAO ; Zeng-Yan LIU ; Xiao-Dan LIU
Journal of Experimental Hematology 2023;31(6):1797-1803
OBJECTIVE:
To investigate the effect of miR-125b on T cell activation in patients with aplastic anemia (AA) and its molecular mechanism.
METHODS:
A total of 30 AA patients were enrolled in department of hematology, Binzhou Medical University Hospital from January 2018 to October 2021, as well as 15 healthy individuals as healthy control (HC) group. Peripheral blood mononuclear cells (PBMCs) were isolated, in which the levels of miR-125b and B7-H4 mRNA were detected by RT-qPCR. Immunomagnetic beads were used to separate naive T cells and non-naive T cells from AA patients and healthy people to detect the levels of miR-125b and B7-H4 mRNA. Lentivirus LV-NC inhibitor and LV-miR-125b inhibitor were transfected into cells, and T cell activation was detected by flow cytometry. The dual-luciferase reporter gene assay was used to detect the targetting relationship between miR-125b and B7-H4. RT-qPCR and Western blot were used to detect the levels of miR-125b, CD40L, ICOS, IL-10 mRNA and B7-H4 protein.
RESULTS:
Compared with HC group, the expression of miR-125b was up-regulated but B7-H4 mRNA was down-regulated in PBMCs of AA patients (P <0.05), and the proportions of CD4+CD69+ T cells and CD8+CD69+ T cells in PBMCs of AA patients were higher (P <0.05). The expression of miR-125b was significantly up-regulated but B7-H4 mRNA was down-regulated in both naive T cells and non-naive T cells of AA patients (P <0.05), and non-naive T cells was more significant than naive T cells (P <0.05). Compared with NC inhibitor group, the expression of miR-125b was significantly decreased, the expression level of CD69 on CD4+ and CD8+ T cells in PBMCs was also significantly decreased, while the luciferase activity was significantly increased after co-transfection of miR-125b inhibitor and B7-H4-3'UTR-WT in the miR-125b inhibitor group (P <0.05). Compared with NC inhibitor group, the mRNA and protein levels of B7-H4 were significantly increased in the miR-125b inhibitor group (P <0.05). Compared with miR-125b inhibitor+shRNA group, the expression levels of CD69 on CD4+ and CD8+ T cells were significantly increased, and the levels of CD40L, ICOS and IL-10 mRNA were also significantly increased in the miR-125b inhibitor+sh-B7-H4 group (P <0.05).
CONCLUSION
MiR-125b may promote T cell activation by targetting B7-H4 in AA patients.
Humans
;
Anemia, Aplastic/genetics*
;
CD40 Ligand/metabolism*
;
Interleukin-10
;
Leukocytes, Mononuclear/metabolism*
;
Luciferases
;
MicroRNAs/genetics*
;
RNA, Messenger/metabolism*
;
Lymphocyte Activation
;
T-Lymphocytes/metabolism*
8.miR-509-3p promotes oxidized low-density lipoprotein-induced apoptosis in mouse aortic endothelial cells.
Rui ZHANG ; Yanqiu SONG ; Fumei ZHAO ; Ting LIU ; Hongliang CONG ; Hui ZHAO
Chinese Critical Care Medicine 2023;35(12):1291-1297
OBJECTIVE:
To investigate the effect of microRNA-509-3p (miR-509-3p) on the apoptosis of atherosclerotic vascular endothelial cells.
METHODS:
Mouse aortic endothelial cells (MAECs) were divided into normal control group, oxidized low-density lipoprotein (ox-LDL) group, miR-509-3p overexpression group, miR-509-3p overexpression control group, miR-509-3p inhibitor + ox-LDL group, and miR-509-3p inhibitor control + ox-LDL group. MAEC were induced with 100 mg/L ox-LDL for 24 hours, and then transfected with miR-509-3p overexpression/inhibitor and corresponding control for 48 hours. The miR-509-3p expression in MAECs exposed to ox-LDL was detected using real-time fluorescence quantitative polymerase chain reaction (RT-qPCR). Flow cytometry was used to detect the level of apoptosis, and cell counting kit (CCK-8) was used to detect the proliferation activity of MAECs. The direct gene targets of miR-509-3p were predicted using bioinformatics analyses and confirmed using a dual luciferase reporter assay. The expression of Bcl-2 mRNA and protein was detected by RT-qPCR and Western blotting, respectively.
RESULTS:
Compared with the normal control group, miR-509-3p was significantly upregulated in ox-LDL-stimulated MAECs (1.68±0.85 vs. 1.00±0.30, t = 2.398, P < 0.05). After transfection of MAECs with miR-509-3p overexpression, the luciferase activity of the BCL2 3'UTR WT reporter gene was significantly lower than that of miR-509-3p overexpression control group (0.83±0.06 vs. 1.00±0.07, t = 4.531, P = 0.001). The luciferase activity of the BCL2 3'-UTR mutant (MUT) reporter gene was not significantly different from that of miR-509-3p overexpression control group (0.94±0.05 vs. 1.00±0.08, t = 1.414, P = 0.188). Compared with the normal control group and miR-509-3p mimics control group, the cell proliferation activity was decreased [(0.60±0.06)% vs. (1.00±0.09)%, (0.89±0.04)%, both P < 0.01], the percentage of apoptotic cells were increased [(23.46±2.02)% vs. (7.66±1.52)%, (10.40±0.78)%, both P < 0.05], and the mRNA and protein expression of Bcl-2 were significantly downregulated (Bcl-2 mRNA: 0.52±0.13 vs. 1.00±0.36, 1.10±0.19, Bcl-2 protein: 0.42±0.07 vs. 1.00±0.11, 0.93±0.10, both P < 0.01) in miR-509-3p overexpression group. Compared with the ox-LDL group, inhibition of miR-509-3p expression could increase the proliferation activity of MAECs induced by ox-LDL [(0.64±0.35)% vs. (0.34±0.20%)%, P < 0.05], and reduce the apoptosis rate [(13.59±2.22)% vs. (29.84±5.19)%, P < 0.01], and up-regulated the expression of Bcl-2 mRNA and protein in MAECs induced by ox-LDL (Bcl-2 mRNA relative expression: 0.82±0.09 vs. 0.52±0.10, Bcl-2 protein relative expression: 0.83±0.17 vs. 0.40±0.07, both P < 0.05).
CONCLUSIONS
Bcl-2 was one of the target genes of miR-509-3p. miR-509-3p can reduce the proliferation activity of endothelial cells, reduce the expression of Bcl-2, and promote cell apoptosis, thereby promoting the occurrence and development of atherosclerosis. Inhibition of miR-509-3p expression may be a potential therapeutic target for atherosclerosis.
Animals
;
Mice
;
Humans
;
Endothelial Cells
;
MicroRNAs/metabolism*
;
Signal Transduction
;
Lipoproteins, LDL/metabolism*
;
Apoptosis
;
RNA, Messenger/metabolism*
;
Proto-Oncogene Proteins c-bcl-2/pharmacology*
;
Atherosclerosis/metabolism*
;
Luciferases/pharmacology*
;
Cell Proliferation
;
Human Umbilical Vein Endothelial Cells
9.Construction of fluorescent transgenic zebrafish Tg (ttn.2: EGFP).
Jiale CHEN ; Qiuxiang CAO ; Hui CAO ; Xiangding CHEN ; Yun DENG
Chinese Journal of Biotechnology 2023;39(4):1804-1814
In order to develop a transgenic zebrafish line with green fluorescent protein (enhanced green fluorescent protein, EGFP) expressed specifically in muscle and heart, the recombinant expression vector constructed using the zebrafish ttn.2 gene promoter fragment and EGFP gene coding sequence and the capped mRNA of Tol2 transposase were co-injected into the zebrafish 1-cell stage embryos. The stable genetic Tg (ttn.2: EGFP) transgenic zebrafish line was successfully developed by fluorescence detection, followed by genetic hybridization screening and molecular identification. Fluorescence signals and whole-mount in situ hybridization showed that EGFP expression was located in muscle and heart, the specificity of which was consistent with the expression of ttn.2 mRNA. Inverse PCR showed that EGFP was integrated into chromosomes 4 and 11 of zebrafish in No. 33 transgenic line, while integrated into chromosome 1 in No. 34 transgenic line. The successful construction of this fluorescent transgenic zebrafish line, Tg (ttn.2: EGFP), laid a foundation for the research of muscle and heart development and related diseases. In addition, the transgenic zebrafish lines with strong green fluorescence can also be used as a new ornamental fish.
Animals
;
Zebrafish/genetics*
;
Animals, Genetically Modified/genetics*
;
Green Fluorescent Proteins/metabolism*
;
Zebrafish Proteins/genetics*
;
Promoter Regions, Genetic
10.Role of steroid receptor-associated and regulated protein in tumor progression and progesterone receptor signaling in endometrial cancer.
Jie LIU ; Zhiqi WANG ; Jingyi ZHOU ; Jiaqi WANG ; Xiangjun HE ; Jianliu WANG
Chinese Medical Journal 2023;136(21):2576-2586
BACKGROUND:
Steroid receptor-associated and regulated protein (SRARP) suppresses tumor progression and modulates steroid receptor signaling by interacting with estrogen receptors and androgen receptors in breast cancer. In endometrial cancer (EC), progesterone receptor (PR) signaling is crucial for responsiveness to progestin therapy. The aim of this study was to investigate the role of SRARP in tumor progression and PR signaling in EC.
METHODS:
Ribonucleic acid sequencing data from the Cancer Genome Atlas, Clinical Proteomic Tumor Analysis Consortium, and Gene Expression Omnibus were used to analyze the clinical significance of SRARP and its correlation with PR expression in EC. The correlation between SRARP and PR expression was validated in EC samples obtained from Peking University People's Hospital. SRARP function was investigated by lentivirus-mediated overexpression in Ishikawa and HEC-50B cells. Cell Counting Kit-8 assays, cell cycle analyses, wound healing assays, and Transwell assays were used to evaluate cell proliferation, migration, and invasion. Western blotting and quantitative real-time polymerase chain reaction were used to evaluate gene expression. The effects of SRARP on the regulation of PR signaling were determined by co-immunoprecipitation, PR response element (PRE) luciferase reporter assay, and PR downstream gene detection.
RESULTS:
Higher SRARP expression was significantly associated with better overall survival and disease-free survival and less aggressive EC types. SRARP overexpression suppressed growth, migration, and invasion in EC cells, increased E-cadherin expression, and decreased N-cadherin and Wnt family member 7A ( WNT7A ) expression. SRARP expression was positively correlated with PR expression in EC tissues. In SRARP -overexpressing cells, PR isoform B (PRB) was upregulated and SRARP bound to PRB. Significant increases in PRE-based luciferase activity and expression levels of PR target genes were observed in response to medroxyprogesterone acetate.
CONCLUSIONS
This study illustrates that SRARP exerts a tumor-suppressive effect by inhibiting the epithelial-mesenchymal transition via Wnt signaling in EC. In addition, SRARP positively modulates PR expression and interacts with PR to regulate PR downstream target genes.
Female
;
Humans
;
Receptors, Progesterone/metabolism*
;
Proteomics
;
Cell Line, Tumor
;
Endometrial Neoplasms/metabolism*
;
Cell Proliferation/genetics*
;
Luciferases/pharmacology*
;
Gene Expression Regulation, Neoplastic/genetics*

Result Analysis
Print
Save
E-mail