1.Artificial intelligence fluorescence method versus traditional flow cytometry for detection of sperm DFI in oligospermia patients.
Shao-Bin LIN ; Gui-Quan WANG ; Ping LI
National Journal of Andrology 2025;31(2):115-120
OBJECTIVE:
To explore the influence of oligospermia (OS) on the detection of sperm DNA fragmentation index (DFI) by fluorescence method based on artificial intelligence (AI) recognition and flow cytometry-based sperm chromatin structure assay (SCSA).
METHODS:
We collected semen samples from 201 males, including 50 azoospermia (AS) patients as negative controls, 90 OS patients (sperm concentration >0×10⁶/ml and <15×10⁶/ml), and 61 normal men (sperm concentration ≥15×10⁶/ml). Then we subdivided the OS patients into a mild OS (sperm concentration ≥10×10⁶/ml and <15×10⁶/ml), a moderate OS (sperm concentration ≥5×10⁶/ml and <10×10⁶/ml) and a severe/extremely severe OS group (sperm concentration >0×10⁶/ml and <5×10⁶/ml), with 30 cases in each group, and compared the results of DFI detection between the AI fluorescence method and traditional flow cytometry.
RESULTS:
The DFI value detected by AI fluorescence method showed statistically significant difference from that detected by flow cytometry in the AS, moderate OS and severe/extremely severe OS groups (P<0.01), the former even lower than the latter, but not in the normal control and the mild OS groups (P > 0.05). In the AS group, a dramatically lower rate of non-0 results was achieved by AI fluorescence method than by flow cytometry (8% vs 100%, P<0.01). The DFI values detected by AI fluorescence method exhibited a good linear correlation to those obtained by flow cytometry in the normal control and mild OS groups (R2 = 0.7470; R2 = 0.7180), but a poor linear correlation in the OS full-sample, moderate OS and severe/extremely severe OS groups (R2 = 0.3092; R2 = 0.3558; R2 = 0.2147).
CONCLUSION
The AI fluorescence method has a higher specificity and is more suitable than flow cytometry for detection of sperm DFI in OS patients. The DFI values obtained by the two methods are consistent with sperm concentration ≥10×10⁶/ml, but the accuracy of the results of detection may be affected with sperm concentration >0×10⁶/ml and <10×10⁶/ml.
Humans
;
Male
;
Flow Cytometry/methods*
;
Oligospermia/genetics*
;
Artificial Intelligence
;
Spermatozoa
;
Adult
;
DNA Fragmentation
;
Case-Control Studies
;
Fluorescence
2.Generation of the Ci1 Reporter Mouse Strain with Enhanced Fluorescence for Tissue Clearing Applications.
Manyu CHEN ; Youqi LI ; Juan HUANG ; Yilong WANG ; Hu ZHAO
Neuroscience Bulletin 2025;41(8):1317-1328
The advancement of tissue clearing technology has significantly propelled neuroscience research. Nevertheless, the fluorescent proteins used in traditional transgenic mouse strains were not specifically optimized for tissue clearing procedures, resulting in a substantial decrease in fluorescent intensity after clearing. In this study, we developed the Ci1 reporter mouse strain (where Ci stands for the Chinese Institute for Brain Research, CIBR) based on the bright red fluorescent protein mScarlet. The Ci1 reporter exhibits no fluorescence leakage in various organs or tissue types and can be readily crossed with multiple tissue-specific Cre lines. Compared to the Ai14 mouse strain, the Ci1 reporter strain demonstrates lower non-specific leakage, stronger fluorescence intensity in different tissues, and better preservation of fluorescence following tissue clearing treatment. The creation of the Ci1 reporter provides a more effective tool for both neuroscience and other biomedical research applications.
Animals
;
Luminescent Proteins/metabolism*
;
Mice, Transgenic
;
Mice
;
Red Fluorescent Protein
;
Brain/metabolism*
;
Genes, Reporter
;
Fluorescence
3.Research progress in the fungal bioluminescence pathway.
Lei LÜ ; Ke CHENG ; Zhitao XU ; Shijie AN ; Dang XU ; Hao DU
Chinese Journal of Biotechnology 2025;41(7):2545-2558
The fungal bioluminescence pathway (FBP) catalyzes the oxidation of endogenous caffeic acid to produce green bioluminescence through an enzymatic cascade. Genetic engineering of FBP into plants creates autoluminescent specimens that circumvent the substrate limitations of conventional reporter systems. These transgenic plants serve dual functions as aesthetic displays and versatile biosensing platforms, enabling applications in real-time gene expression monitoring, continuous environmental surveillance, and non-invasive bioimaging, offering novel opportunities for horticultural production, environmental conservation, and bioengineering applications. This review synthesizes current advances in plant FBP engineering and explores how machine learning approaches can optimize autoluminescent phenotypes, thereby accelerating innovation in agricultural biotechnology, environmental sensing, and synthetic biology applications.
Fungi/genetics*
;
Plants, Genetically Modified/metabolism*
;
Genetic Engineering
;
Biosensing Techniques
;
Luminescent Measurements
;
Caffeic Acids/metabolism*
;
Luminescence
4.Fungal luminescence pathways: research and applications.
Yujie WU ; Jiarui XU ; Hongyu CHEN ; Hao DU
Chinese Journal of Biotechnology 2024;40(1):1-14
The fungal bioluminescence pathway (FBP) is a metabolic pathway responsible for the generation of bioluminescence derived from fungi. This pathway utilizes caffeic acid as the substrate, generating a high-energy intermediate, and the decomposition of which yields green fluorescence with a wavelength of approximately 520 nm. The FBP is evolutionally conserved in luminescent fungal groups. Unlike other bioluminescent systems, the FBP is particularly suitable for engineering applications in eukaryotic organisms, especially in plants. Currently, metabolically engineered luminescent plants are able to emit visible light to illuminate its surroundings, which can be visualized clearly in the dark. The fungal bioluminescent system could be explored in various applications in molecular biology, biosensors and glowing ornamental plants, and even green lighting along city streets.
Luminescence
;
Light
;
Fluorescence
;
Eukaryota
;
Green Light
5.A fluorescence immunochromatography method for detection of human papillomavirus type 16 E6 and L1 proteins.
Xin'er LIU ; Yinzhen ZHAO ; Nannan NIU ; Lingke LI ; Xueli DU ; Jinxiang GUO ; Yingfu ZHANG ; Jichuang WANG ; Yiqing ZHANG ; Yunlong WANG
Chinese Journal of Biotechnology 2024;40(11):4266-4276
This study aims to establish a time-resolved fluorescence immunochromatography method for simultaneous determination of human papillomavirus (HPV) type 16 E6 and L1 protein concentrations. The amount of lanthanide microsphere-labeled antibodies, the concentration of coated antibodies, and the reaction time were optimized, and then a test strip for the simultaneous determination of the protein concentrations was prepared. The performance of the detection method was evaluated based on the concordance of the results from clinical practice. The optimal conditions were 8 μg and 10 μg of HPV16 L1 and E6-labeled antibodies, respectively, 1.5 mg/mL coated antibodies, and reaction for 10 min. The detection with the established method for L1 and E6 proteins showed the linear ranges of 5-320 ng/mL and 2-64 ng/mL and the lowest limits of detection of 1.78 ng/mL and 1.09 ng/mL, respectively. There was no cross reaction with human immunodeficiency virus (HIV), treponema pallidum (TP), or HPV18 E6 and L1 proteins. The average recovery rate of the established method was between 97% and 107%. The test strip prepared in this study showed the sensitivity, specificity, and diagnostic accuracy of 97.46%, 90.57%, and 95.32%, respectively, in distinguishing patients with cervical cancer and precancerous lesions from healthy subjects, with the area under the curve (AUC) of 0.980 1 and 95% Confidence Interval (CI) of 0.956 5 to 1.000 0. The time-resolved fluorescence immunochromatography combined with the test strips prepared in this study showed high sensitivity, high accuracy, simple operation, and rapid reaction in the quantitation of HPV16 E6 and L1 proteins. It thus can be used as an auxiliary method for the diagnosis and early screening of cervical cancer and precancerous lesions and the assessment of disease course.
Oncogene Proteins, Viral/immunology*
;
Humans
;
Chromatography, Affinity/methods*
;
Female
;
Human papillomavirus 16
;
Repressor Proteins/immunology*
;
Capsid Proteins/immunology*
;
Papillomavirus Infections/diagnosis*
;
Fluorescence
;
Uterine Cervical Neoplasms/virology*
6.Comparison of detection rates of chromosome G-banding karyotype analysis and fluorescence in situ hybridization among children with sex chromosome mosaicisms.
Weiwei XIAO ; Juan HUANG ; Wei LIU ; Bing LI ; Zhe SU ; Lili PAN ; Yunsheng CHEN
Chinese Journal of Medical Genetics 2023;40(1):12-16
OBJECTIVE:
To explore the coincidence rate of G-banding karyotype analysis and fluorescence in situ hybridization (FISH) for the diagnosis of children with sex chromosome mosaicisms.
METHODS:
A retrospective analysis was carried out for 157 children with suspected sex chromosome abnormalities who had presented at Shenzhen Children's Hospital from April 2021 to May 2022. Interphase sex chromosome FISH and G-banding karyotyping results were collected. The coincidence rate of the two methods in children with sex chromosome mosaicisms was compared.
RESULTS:
The detection rates of G-banding karyotype analysis and FISH were 26.1% (41/157) and 22.9% (36/157) , respectively (P > 0.05). The results of G-banding karyotype analysis showed that 141 cases (89.8%) were in the sex chromosome homogeneity group, of which only 5 cases (3.5%) were inconsistent with the results of FISH. There were 16 cases (10.2%) in the sex chromosome mosaicism group, of which 11 cases (68.8%) were inconsistent with the results of FISH. There was a statistical difference between the two groups in the coincidence rate of the results of the two methods (P < 0.05).
CONCLUSION
No significant difference was found between G-banding karyotype analysis and FISH in the detection rate of chromosome abnormalities. The coincidence rate in the mosaicism group was lower than that in the homogeneity group, and the difference was statistically significant. The two methods should be combined for clinical diagnosis.
Humans
;
Mosaicism
;
In Situ Hybridization, Fluorescence/methods*
;
Retrospective Studies
;
Karyotyping
;
Chromosome Aberrations
;
Sex Chromosome Aberrations
;
Karyotype
;
Chromosome Banding
;
Sex Chromosomes
7.Prenatal diagnosis for a fetus with 5p deletion syndrome.
Jun WANG ; Weiguo ZHANG ; Huanli YANG ; Xuejuan MA ; Jiexian LI ; Xing CHEN
Chinese Journal of Medical Genetics 2023;40(1):101-104
OBJECTIVE:
To explore the genetic basis for a fetus with club foot detected upon mid-pregnancy ultrasonography.
METHODS:
Amniotic fluid of the fetus and peripheral blood samples of its parents were collected and subjected to G-banding karyotype analysis and copy number variation sequencing (CNV-seq). The result was verified by fluorescence in situ hybridization (FISH).
RESULTS:
The fetus and its parents all had a normal karyotype. CNV-seq analysis revealed that the fetus has harbored a 23.12 Mb on chromosome 5 and a 21.46 Mb duplication on chromosome 7. FISH assay has verified that its mother has carried a cryptic t(5;7)(p14.3;q33) translocation.
CONCLUSION
CNV-seq combined with FISH can effectively detect cryptic chromosome aberrations, and can help to reduce severe birth defects and provide a basis for prenatal genetic counseling.
Pregnancy
;
Female
;
Humans
;
Cri-du-Chat Syndrome
;
In Situ Hybridization, Fluorescence
;
DNA Copy Number Variations
;
Prenatal Diagnosis
;
Fetus
;
Amniotic Fluid
;
Chromosome Deletion
8.Genetic features of a case with mosaic ring chromosome 4 and a review of the literature.
Canling MA ; Yingying WANG ; Na ZHEN ; Changxi SHAO ; Daoling ZHANG ; Yan JIANG ; Yu DU ; Yifang JIA
Chinese Journal of Medical Genetics 2023;40(1):105-109
OBJECTIVE:
To explore the genetic basis, clinical phenotype and pathogenesis for a child with mosaicism ring chromosome 4.
METHODS:
Clinical data of the child was collected. Peripheral blood chromosomal karyotype G banding analysis, chromosomal microarray analysis (CMA), fluorescence in situ hybridization (FISH) were carried out for the child, in addition with a review of the literature.
RESULTS:
The child was born full-term with low birth weight, facial dysmorphism, patent ductus arteriosus and ventricular septal defect. His karyotype was determined as mos46,XY,r(4)(p16.3q35.2)[259]/45,XY,-4[25]/47,XY,r(4)(p16.3q35.2), +r(4)(p16.3q35.2)[8]/46,XY,der(4)del(4)(p16.3)inv(4)(p16.3q31.1)[6]/46,XY,dic?r(4;4)(p16.3q35.2;p16.3q35.2)[4]/48,XY,r(4)(p16.3q35.2),+r(4)(p16.3q35.2)×2[3]/46,XY,r(4)(p1?q2?)[2]; CMA result was arr[GRCH37]4p16.3(68 345-2 981 614)×1; FISH result was 45,XY,-4[12]/45,XY,-4×2,+mar1.ish r1(4)(WHS-,D4Z1+)[1]/ 46,XY,-4,+mar1.ishr1(4)(WHS-,D4Z1+)[73]/46,XY,-4,+mar2.ishr2(4)(WHS-,D4Z1++)[1]/47,XY,-4,+mar1×2.ishr1(4) (WHS-, D4Z1+)×2[4]/46,XY,del(4)(p16.3).ish del(4)(p16.3)(WHS-,D4Z1+)[9].
CONCLUSION
In this case, the ring chromosome 4 as a de novo variant has produced a number of cell lines during embryonic development and given rise to mosaicism. The clinical phenotype of ring chromosome 4 is variable. The instability of the ring chromosome itself, presence of mosaicism, chromosome breakpoint and range of deletion and/or duplication may all affect the ultimate phenotype.
Humans
;
Pregnancy
;
Female
;
Ring Chromosomes
;
In Situ Hybridization, Fluorescence
;
Karyotyping
;
Karyotype
;
Mosaicism
9.Genetic analysis of a case of B-acute lymphoblastic leukaemia with double Philadelphia chromosomes and double derivative chromosome 9s.
Xuxi ZHANG ; Youwen QIN ; Zhaoqiang FU ; Bingyao ZHANG ; Mengya SU ; Chuxian ZHAO ; Chun WANG
Chinese Journal of Medical Genetics 2023;40(2):242-246
OBJECTIVE:
To explore the genetic basis for a rare case of acute B-lymphocytic leukemia (B-ALL) with double Philadelphia chromosomes (Ph) and double derivative chromosome 9s [der(9)].
METHODS:
A patient with double Ph and double der(9) B-ALL who presented at Shanghai Zhaxin Intergrated Traditional Chinese and Western Medicine Hospital in June 2020 was selected as the subject. Bone marrow morphology, flow cytometry, G-banding karyotyping, fluorescence in situ hybridization (FISH), genetic testing and chromosomal microarray analysis (CMA) were used to analyze bone marrow samples from the patient at various stages.
RESULTS:
At initial diagnosis, the patient's bone marrow morphology and flow immunotyping have both supported the diagnosis of B-ALL. G-banded karyotyping of the patient indicated double Ph, in addition with hyperdiploid chromosomes involving translocations between chromosomes 9 and 22. BCR-ABL1 fusion gene was positive. Genetic testing at the time of recurrence revealed presence of a heterozyous c.944C>T variant in the kinase region of the ABL1 gene. FISH showed a signal for ABL1-BCR fusion on both chromosome 9s. CMA showed that the mosaicism homozygosity ratio of chromosome 9 was about 40%, and the mosaicism duplication ratio of chromosome 22 was about 43%.
CONCLUSION
Since both der(9) homologs were seen in 40% of cells, the possible mechanism for the double der(9) in this patient may be similar to that of double Ph, which might have resulted from non-disjunction during mitosis in the Ph chromosome-positive cell clone.
Humans
;
Philadelphia Chromosome
;
In Situ Hybridization, Fluorescence/methods*
;
China
;
Chromosome Aberrations
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics*
;
Translocation, Genetic
;
Fusion Proteins, bcr-abl/genetics*
;
Chromosomes, Human, Pair 9/genetics*
10.Application of fluorescence in situ hybridization technique to verify the clonalities of non-clonal cytogenetic abnormalities identified in Myelodysplastic syndrome.
Zheng WANG ; Yanlin WANG ; Wenjie SONG ; Lin FENG ; Lu GAO ; Ye LI ; Xiaojun HUANG ; Yueyun LAI
Chinese Journal of Medical Genetics 2023;40(3):257-262
OBJECTIVE:
To assess the value of fluorescence in situ hybridization (FISH) technique for the verification of the clonalities of non-clonal cytogenetic abnormalities (n-CCA) identified by conventional chromosome banding analysis (CBA) in patients with Myelodysplastic syndrome (MDS).
METHODS:
Clinical data and results of karyotyping and FISH assays for 91 patients of MDS with n-CCA identified by CBA were retrospectively analyzed. In total 94 non-clonal +8, 5q-, -7/7q- or 20q- were detected by CBA, among which 43 (45.7%) were verified to be clonal abnormalities by FISH.
RESULTS:
The detection rates for +8, 5q-, -7/7q- and 20q- by FISH were 47.6% (30/63), 25% (2/8), 41.7% (5/12), 40% (2/5) and 66.7% (4/6), respectively, with the positive cells accounting for 4% to 90% of all counted cells, with a median value of 7%. The 91 patients were divided into three groups including ≥ 20, 10 ~< 20 and < 10 based on the numbers of metaphase cells in CBA, and the detection rates by FISH for the three groups were 43.7% (31/71), 33.3% (3/9) and 63.6% (7/11), respectively, which showed no statistically difference (P > 0.05). Continuous CBA and FISH surveys were conducted for 26 patients who received supportive treatment, and the results revealed that 91.7% (11/12) of FISH-verified positive abnormalities had persisted, whereas 92.9% (13/14) of the n-CCA verified as negative by FISH was transient.
CONCLUSION
Nearly half of the CBA identified n-CCA have been verified as clonal aberrations by FISH, and the FISH detection rate showed no correlation with the number of metaphase cells. FISH test is strongly recommended for verifying the clonalities of n-CCA detected by CBA, and continuous cytogenetic survey of the patients with MDS is necessary.
Humans
;
In Situ Hybridization, Fluorescence
;
Retrospective Studies
;
Chromosome Aberrations
;
Karyotyping
;
Myelodysplastic Syndromes/genetics*

Result Analysis
Print
Save
E-mail