1.GPSM2 is highly expressed in gastric cancer to affect patient prognosis by promoting tumor cell proliferation.
Xue SONG ; Yue CHEN ; Min ZHANG ; Nuo ZHANG ; Lugen ZUO ; Jing LI ; Zhijun GENG ; Xiaofeng ZHANG ; Yueyue WANG ; Lian WANG ; Jianguo HU
Journal of Southern Medical University 2025;45(2):229-238
OBJECTIVES:
To explore the association between GPSM2 expression level and gastric cancer progression and analyze the functional pathways and action mechanism of GPSM2.
METHODS:
We analyzed GPSM2 expression levels in gastric cancer tumors based on data from the GEPIA database and the clinical data of 109 patients. Public databases enrichment analysis were used to assess the impact of GPSM2 expression level on survival outcomes and the functional pathways and action mechanism of GPSM2. We further observed the effects of GPSM2 knockdown and overexpression on proliferation, migration and apoptosis of MGC803 cells using CCK-8 assay, colony formation assay, flow cytometry and immunoblotting and on the growth of MGC803 cell xenografts in nude mice.
RESULTS:
Bioinformatic analysis and immunohistochemical staining of the clinical specimens both revealed high GPSM2 expressions in gastric cancer (P<0.01). A high GPSM2 expression was significantly correlated with T3-4 stages, N2-3 stages, a carcinoembryonic antigen (CEA) level ≥5 μg/L, and a carbohydrate antigen (CA) 19-9 level ≥37 kU/L (P<0.05). Cox regression analysis identified high GPSM2 expression as an independent risk factor affecting 5-year survival of the patients (P<0.05). Gene ontology (GO) analysis suggested that GPSM2 was involved in cell cycle regulation. In MGC803 cells, GPSM2 overexpression significantly promoted cell proliferation and G1/S transition and xenograft growth in nude mice. KEGG pathway enrichment analysis indicated that GPSM2 executed its biological functions by regulating the p53 signaling pathway, which was confirmed by the results of immunoblotting experiments showing suppression of p53 signaling pathway activity in GPSM2-over expressing MGC803 cells.
CONCLUSIONS
GPSM2 is highly expressed in gastric cancer to affect patient prognosis by promoting tumor cell proliferation and G1/S transition possibly via inhibiting the p53 pathway.
Stomach Neoplasms/metabolism*
;
Humans
;
Cell Proliferation
;
Prognosis
;
Animals
;
Mice, Nude
;
Cell Line, Tumor
;
Mice
;
Apoptosis
;
Tumor Suppressor Protein p53/metabolism*
;
Cell Movement
2.Nodakenin ameliorates TNBS-induced experimental colitis in mice by inhibiting pyroptosis of intestinal epithelial cells.
Ju HUANG ; Lixia YIN ; Minzhu NIU ; Zhijun GENG ; Lugen ZUO ; Jing LI ; Jianguo HU
Journal of Southern Medical University 2025;45(2):261-268
OBJECTIVES:
To investigate the therapeutic mechanism of nodakenin for Crohn's disease (CD)-like colitis in mice.
METHODS:
Using a colonic organoid model with lipopolysaccharide (LPS)- and ATP-induced pyroptosis, we investigated the effects of nodakenin on pyroptosis, intestinal barrier function and inflammatory response by detecting key pyroptosis-regulating factors and assessing changes in permeability and pro-inflammatory factors. In a mouse model of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced CD-like colitis, the therapeutic effect of nodakenin was evaluated by measuring changes in body weight, DAI score, colonic histopathologies, inflammation score, intestinal barrier function and intestinal epithelial cell pyroptosis. The mechanism of nodakenin protection against pyroptosis of intestinal epithelial cells was explored using network pharmacology analysis and in vivo and in vitro experiments.
RESULTS:
In LPS- and ATP-induced colonic organoids, treatment with nodakenin significantly inhibited the expressions of NLRP3, GSDMD-N, cleaved caspase-1 and caspase-11, improved intestinal FITC-dextran (FD4, 4000) permeability, and decreased the levels of IL-1β and IL-18. In the mouse model of TNBS-induced colitis, nodakenin treatment significantly alleviated weight loss, reduced DAI score, inflammatory cell infiltration and inflammation score, and decreased serum FD4 and I-FABP levels and bacteria translocation to the mesenteric lymph nodes, spleen and liver. The mice with nodakenin treatment had also lowered expressions of NLRP3, GSDMD-N, cleaved caspase-1 and caspase-11 in the intestinal mucosa. Network pharmacology analysis suggested that the inhibitory effect of nodakenin on colitis was associated with the PI3K/Akt pathway. In both the colonic organoid model and mouse models of colitis, nodakenin effectively inhibited the activation of the PI3K/Akt pathway, and the application of IGF-1, a PI3K/Akt pathway activator, strongly attenuated the protective effect of nodakenin against intestinal epithelial cell pyroptosis and intestinal barrier dysfunction.
CONCLUSIONS
Nodakenin protects intestinal barrier function and alleviates CD-like colitis in mice at least partly by inhibiting PI3K/Akt signaling to reduce intestinal epithelial cell pyroptosis.
Animals
;
Pyroptosis/drug effects*
;
Mice
;
Trinitrobenzenesulfonic Acid
;
Colitis/drug therapy*
;
Epithelial Cells/drug effects*
;
Intestinal Mucosa/cytology*
;
Disease Models, Animal
;
Coumarins/pharmacology*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Crohn Disease/drug therapy*
3.High MYO1B expression promotes proliferation, migration and invasion of gastric cancer cells and is associated with poor patient prognosis.
Qingqing HUANG ; Wenjing ZHANG ; Xiaofeng ZHANG ; Lian WANG ; Xue SONG ; Zhijun GENG ; Lugen ZUO ; Yueyue WANG ; Jing LI ; Jianguo HU
Journal of Southern Medical University 2025;45(3):622-631
OBJECTIVES:
To analyze MYO1B expression in gastric cancer, its association with long-term prognosis and its role in regulating biological behaviors of gastric cancer cells.
METHODS:
We analyzed MYO1B expression in gastric cancer and its correlation with tumor grade, tumor stage, and patient survival using the Cancer Public Database. We also examined MYO1B expression with immunohistochemistry in gastric cancer and paired adjacent tissues from 105 patients receiving radical surgery and analyzed its correlation with cancer progression and postoperative 5-year survival of the patients. GO and KEGG enrichment analyses were used to explore the biological functions of MYO1B and the key pathways. In cultured gastric cancer cells, we examined the changes in cell proliferation, migration and invasion following MYO1B overexpression and knockdown.
RESULTS:
Data from the Cancer Public Database showed that MYO1B expression was significantly higher in gastric cancer tissues than in normal tissues with strong correlations with tumor grade, stage and patient prognosis (P<0.05). In the clinical tissue samples, MYO1B was significantly overexpressed in gastric cancer tissues in positive correlation with Ki67 expression (r=0.689, P<0.05) and the parameters indicative of gastric cancer progression (CEA ≥5 μg/L, CA19-9 ≥37 kU/L, G3-4, T3-4, and N2-3) (P<0.05). Kaplan-Meier analysis and multivariate Cox regression analysis suggested that high MYO1B expression was associated with decreased postoperative 5-year survival and was an independent risk factor (HR: 3.522, 95%CI: 1.783-6.985, P<0.05). MYO1B expression level was a strong predictor of postoperative survival (cut-off value: 3.11, AUC: 0.753, P<0.05). GO and KEGG analyses suggested that MYO1B may regulate cell migration and the mTOR signaling pathway. In cultured gastric cancer cells, MYO1B overexpression significantly enhanced cell proliferation, migration, and invasion and promoted the phosphorylation of Akt and mTOR.
CONCLUSIONS
High MYO1B expression promotes proliferation, migration and invasion of gastric cancer cells and is correlated with poor patient prognosis.
Humans
;
Stomach Neoplasms/metabolism*
;
Cell Proliferation
;
Prognosis
;
Cell Movement
;
Myosin Type I/genetics*
;
Neoplasm Invasiveness
;
Cell Line, Tumor
;
Female
;
Male
4.Moslosooflavone ameliorates dextran sulfate sodium-induced colitis in mice by suppressing intestinal epithelium apoptosis via inhibiting the PI3K/AKT signaling pathway.
Fei CHU ; Xiaohua CHEN ; Bowen SONG ; Jingjing YANG ; Lugen ZUO
Journal of Southern Medical University 2025;45(4):819-828
OBJECTIVES:
To investigate the effect of moslosooflavone (MOS) for ameliorating dextran sulfate sodium (DSS)-induced colitis in mice and the underlying molecular mechanism.
METHODS:
C57BL/6J mice with or without DSS exposure in the drinking water were both randomized into two groups for treatment with intraperitoneal injections with MOS (200 mg/kg) or normal saline for 7 days (n=6). Disease severity of the mice was assessed by observing changes in body weight, colon length, histopathology (HE staining), intestinal barrier function, and TUNEL staining. In the in vitro studies, lipopolysaccharide (LPS)-stimulated mouse colon organoids were treated with MOS (120 μmol/L) for 24 h, and the changes in barrier dysfunction and inflammation were analyzed. Network pharmacology and Western blotting were employed to identify functional pathways and apoptotic protein regulation associated with the therapeutic effect of MOS on colitis.
RESULTS:
In the mouse models of DSS-indcued colitis, MOS treatment significantly reduced body weight loss, disease activity index (DAI) scores and colon shortening, ameliorated colonic histopathological changes and inflammation, and lowered pro-inflammatory cytokine levels (TNF-α, IL-1β, IL-6, and IFN-γ). MOS effectively restored intestinal barrier integrity in the mice by reducing serum FITC-dextran and I-FABP concentrations while enhancing the tight junction proteins (ZO-1 and claudin-1). In the colon organoids, MOS significantly suppressed LPS-induced inflammatory responses and epithelial barrier disruption. Western blotting revealed that MOS downregulated C-caspase-3 and BAX and upregulated Bcl-2 expressions in both models. Mechanistically, MOS suppressed PI3K and AKT phosphorylation in both DSS-treated mouse colonic tissues and LPS-stimulated organoids.
CONCLUSIONS
MOS alleviates experimental colitis in mice by inhibiting intestinal epithelial apoptosis via inhibiting the PI3K/AKT pathway, thereby restoring intestinal barrier integrity and reducing inflammation.
Animals
;
Dextran Sulfate
;
Mice, Inbred C57BL
;
Colitis/metabolism*
;
Mice
;
Signal Transduction/drug effects*
;
Intestinal Mucosa/metabolism*
;
Apoptosis/drug effects*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Flavones/pharmacology*
;
Male
5.High expression of SURF4 promotes migration, invasion and proliferation of gastric cancer cells by inhibiting tight junction proteins.
Ziliang WANG ; Xiaohua CHEN ; Jingjing YANG ; Chen YAN ; Zhizhi ZHANG ; Bingyi HUANG ; Meng ZHAO ; Song LIU ; Sitang GE ; Lugen ZUO ; Deli CHEN
Journal of Southern Medical University 2025;45(8):1732-1742
OBJECTIVES:
To study the impact of SURF4 expression level on long-term prognosis of gastric cancer (GC) and biological behaviors of GC cells.
METHODS:
SURF4 expression level in GC and its association with long-term patient prognosis were analyzed using publicly available databases and in 155 GC patients with low and high SURF4 expressions detected immunohistochemically. The Cox proportional hazard model and Kaplan-Meier survival curves were used to analyze independent prognostic predictors of GC and the 5-year survival rate of the patients with different SURF4 expression levels. Informatics analyses were conducted to explore the correlation of SURF4 expression level with immune cell infiltration in GC, SURF4-related differential genes and their associated pathways. In cultured GC cell line HGC-27, the effects of SURF4 knockdown and overexpression on proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) were investigated.
RESULTS:
Analysis of GEPIA dataset and immunohistochemical results suggested significant SURF4 overexpression in GC (P<0.05), which was associated with shortened 5-year survival time of the patients (χ2=38.749, P<0.001). The prognosis of GC was closely related to tumor stage T3-4, N2-3, CEA≥5 μg/L and CA19-9≥37 kU/L (P<0.05). SURF4 expression level was negatively correlated with activated B cells, NK cells and CD8+ effector memory T cells (P<0.05) and positively correlated with CD4+ T cells (P<0.05). GO and KEGG enrichment analysis suggested that SUFR4 may participate in GC carcinogenesis by promoting EMT through the tight junction pathway. In HGC-27 cells, SURF4 overexpression significantly decreased E-cadherin expression, increased N-cadherin expression, inhibited ZO-1 and claudin-1 expressions, and promoted cell proliferation, migration and invasion.
CONCLUSIONS
SURF4 is highly expressed in GC, and its overexpression is associated with a shortened 5-year survival of the patients possibly by enhancing tumor cell proliferation, migration and invasion via inhibiting tight junction proteins and promoting EMT.
Humans
;
Stomach Neoplasms/metabolism*
;
Cell Proliferation
;
Cell Movement
;
Epithelial-Mesenchymal Transition
;
Cell Line, Tumor
;
Neoplasm Invasiveness
;
Prognosis
;
Tight Junction Proteins/metabolism*
;
Membrane Proteins/metabolism*
;
Female
;
Male
6.Pinostrobin targets the PI3K/AKT/CCL2 axis in intestinal epithelial cells to inhibit intestinal macrophage infiltration and alleviate dextran sulfate sodium-induced colitis in mice.
Keni ZHANG ; Tong QIAO ; Lin YIN ; Ju HUANG ; Zhijun GENG ; Lugen ZUO ; Jianguo HU ; Jing LI
Journal of Southern Medical University 2025;45(10):2199-2209
OBJECTIVES:
To investigate the mechanism through which pinostrobin (PSB) alleviates dextran sulfate sodium (DSS)-induced colitis in mice.
METHODS:
C57BL/6 mice were randomized into control group, DSS model group, and PSB intervention (30, 60, and 120 mg/kg) groups. Colitis severity of the mice was assessed by examining body weight changes, disease activity index (DAI), colon length, and histopathology. The expressions of tight junction proteins ZO-1 and claudin-1 in the colon tissues were examined using immunofluorescence staining, and macrophage infiltration and polarization were analyzed with flow cytometry. ELISA and RT-qPCR were used for detecting the expressions of inflammatory factors (TNF‑α and IL-6) and chemokines (CCL2, CXCL10, and CX3CL1) in the colon tissues, and PI3K/AKT phosphorylation levels were analyzed with Western blotting. In cultured Caco-2 and RAW264.7 cells, the effect of PSB on CCL2-mediated macrophage migration was assessed using Transwell assay. Network pharmacology analysis was performed to predict the key pathways that mediate the therapeutic effect of PSB.
RESULTS:
In DSS-induced mouse models, PSB at 60 mg/kg optimally alleviated colitis, shown by reduced weight loss and DAI scores and increased colon length. PSB treatment significantly upregulated ZO-1 and claudin-1 expressions in the colon tissues, inhibited colonic macrophage infiltration, and promoted the shift of macrophage polarization from M1 to M2 type. In cultured intestinal epithelial cells, PSB significantly inhibited PI3K/AKT phosphorylation and suppressed chemokine CCL2 expression. PSB treatment obviously blocked CCL2-mediated macrophage migration of RAW264.7 cells, which could be reversed by exogenous CCL2. Network pharmacology analysis and rescue experiments confirmed PI3K/AKT and CCL2 signaling as the core targets of PSB.
CONCLUSIONS
PSB alleviates DSS-induced colitis in mice by targeting intestinal epithelial PI3K/AKT signaling, reducing CCL2 secretion, and blocking macrophage chemotaxis and migration, highlighting the potential of PSB as a novel natural compound for treatment of inflammatory bowel disease.
Animals
;
Mice
;
Mice, Inbred C57BL
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Colitis/drug therapy*
;
Dextran Sulfate
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Macrophages
;
Chemokine CCL2/metabolism*
;
Humans
;
Signal Transduction/drug effects*
;
Caco-2 Cells
;
RAW 264.7 Cells
;
Epithelial Cells/drug effects*
;
Intestinal Mucosa/metabolism*
7.SF3B3 overexpression promotes proliferation of gastric cancer cells and correlates with poor patient prognosis.
Hui LU ; Bowen SONG ; Jinran SHI ; Shunyin WANG ; Xiaohua CHEN ; Jingjing YANG ; Sitang GE ; Lugen ZUO
Journal of Southern Medical University 2025;45(10):2240-2249
OBJECTIVES:
To investigate the role of SF3B3 in gastric cancer (GC) progression and prognosis and its possible mechanisms.
METHODS:
SF3B3 expression levels in pan-cancer and GC were analyzed using TIMER2.0, GEPIA, and UALCAN databases and validated using immunohistochemistry in GC tissues. Survival curves of GC patients were established using Kaplan-Meier Plotter and the data of a patient cohort our hospital. The independent risk factors for 5-year postoperative survival were identified using Cox regression, and their predictive values were evaluated using ROC analysis. SF3B3-associated biological processes were predicted by bioinformatics enrichment analyses. In GC HGC-27 cells, the effects of lentivirus-mediated SF3B3 knockdown and overexpression on cell proliferation and migration were investigated, and the changes in the key glycolytic proteins and extracellular acidification rate (ECAR) were detected. The influence of SF3B3 expression level on tumorigenesis and glycolytic protein expression in vivo were evaluated in a nude mouse xenograft model.
RESULTS:
High expression of SF3B3 in GC was associated with poor patient prognosis (P<0.05). The factors affecting 5-year survival outcomes following gastric oncological resection included high SF3B3 expression, a CEA level ≥5μg/L, a CA19-9 level ≥37 kU/L, tumor stage T3-4, and lymph node metastasis stage N2-3 (P<0.05). Bioinformatics analysis showed significant enrichment of SF3B3 in glycolysis. In HGC-27 cells, SF3B3 knockdown significantly inhibited while SF3B3 overexpression enhanced cell proliferation, migration, and invasion. SF3B3 knockdown obviously decreased the expressions of HK2, PKM2 and LDHA proteins and ECAR in HGC-27 cells, whereas SF3B3 overexpression produced the opposite effect. In nude mouse xenograft models, SF3B3 knockdown significantly reduced tumor mass and downregulated expression of HK2, PKM2 and LDHA proteins, and SF3B3 overexpression induced the opposite changes.
CONCLUSIONS
SF3B3 overexpression is associated with poor prognosis of GC patients and promotes GC cell proliferation, migration and invasion possibly by enhancing glycolysis.
Stomach Neoplasms/diagnosis*
;
Humans
;
Cell Proliferation
;
Prognosis
;
Animals
;
Mice, Nude
;
Cell Line, Tumor
;
Mice
;
Cell Movement
;
Male
;
Female
8.Elevated TMCO1 expression in gastric cancer is associated poor prognosis and promotes malignant phenotypes of tumor cells by inhibiting apoptosis.
Bowen SONG ; Renjie ZHOU ; Ying XU ; Jinran SHI ; Zhizhi ZHANG ; Jing LI ; Zhijun GENG ; Xue SONG ; Lian WANG ; Yueyue WANG ; Lugen ZUO
Journal of Southern Medical University 2025;45(11):2385-2393
OBJECTIVES:
To investigate the impact of high expression of transmembrane and coiled helix structural domain 1 (TMCO1) on prognosis of gastric cancer and the possible mechanisms.
METHODS:
TMCO1 expression in gastric cancer and its effect on gastric cancer progression and prognosis were analyzed using publicly available databases and clinical data of patients undergoing radical surgery in our hospital, and its possible biological functions were explored using KEGG and GO analyses. In gastric cancer HGC-27 cells, the effects of lentivirus-mediated TMCO1 overexpression and TMCO1 silencing on cell apoptosis, proliferation, invasion and migration were examined.
RESULTS:
TMCO1 expression was significantly elevated in gastric cancer tissues (P<0.05), and its high expression was positively correlated with cancer progression (P<0.001) and a lowered postoperative 5-year survival rate of the patients (P<0.05). Bioinformatic analyses suggested that TMCO1 may affect gastric cancer cell apoptosis via Wnt signaling. In HGC-27 cells, TMCO1 overexpression significantly promoted tumor cell proliferation, inhibited cell apoptosis, and enhanced cell migration and invasion, whereas TMCO1 silencing produced the opposite effects. Western blotting showed that β-catenin levels were significantly upregulated in TMCO1-overexpressing cells and downregulated in cells with TMCO1 silencing.
CONCLUSIONS
TMCO1 is overexpressed in gastric cancer tissues, and its high expression promotes gastric cancer progression and affects long-term prognosis of the patients possibly by activating the Wnt/ β-catenin signaling pathway to inhibit apoptosis of gastric cancer cells.
Humans
;
Stomach Neoplasms/metabolism*
;
Apoptosis
;
Prognosis
;
Cell Line, Tumor
;
Cell Proliferation
;
Cell Movement
;
Wnt Signaling Pathway
;
beta Catenin/metabolism*
;
Gene Expression Regulation, Neoplastic
9.High YEATS2 expression promotes epithelial-mesenchymal transition in gastric cancer cells by activating the Wnt/β-catenin signaling pathway.
Xuening JIANG ; Qingqing HUANG ; Ying XU ; Shunyin WANG ; Xiaofeng ZHANG ; Lian WANG ; Yueyue WANG ; Lugen ZUO
Journal of Southern Medical University 2025;45(11):2416-2426
OBJECTIVES:
To investigate YEATS2 expression in gastric cancer (GC), its prognostic value, and its regulatory role in epithelial-mesenchymal transition (EMT) of GC cells.
METHODS:
YEATS2 expression in GC was analyzed using publicly available databases. Paired GC and adjacent tissues were collected from 100 patients undergoing radical surgery for immunohistochemical detection of YEATS2 expression, and its correlations with the patients' clinicopathological parameters and Ki67 expression were analyzed. The prognostic value of YEATS2 was assessed using Kaplan-Meier analysis, Cox regression and ROC curves, and its regulatory mechanisms were analyzed using KEGG enrichment analysis. In cultured GC cell lines (HGC-27 and AGS), the effect of YEATS2 knockdown and overexpression on migration, invasion and EMT of the cells were examined with scratching assay, Transwell assay and Western blotting.
RESULTS:
YEATS2 was significantly overexpressed in GC tissues with a positive correlation with Ki67 (P<0.05). High YEATS2 expression was associated with elevated CEA (≥5 μg/L), CA19-9 (≥37 kU/L), T3-4 stage, and N2-3 stage (all P<0.05). Patients with high YEATS2 expression had significantly reduced 5-year survival (P<0.001); ROC analysis showed that YEATS2 expression levels had a sensitivity of 80.00% and a specificity of 66.67% for predicting patient survival (P<0.05). Cox regression identified high YEATS2 as an independent risk factor for poor postoperative 5-year survival outcome of GC patients (HR: 1.675, 95%CI: 1.013-2.771; P=0.045). KEGG enrichment analysis suggested involvement of YEATS2 in EMT in GC and Wnt/β-catenin signaling. In cultured GC cells, YEATS2 overexpression significantly promoted cell migration and invasion, upregulated the expressions of vimentin, N-cadherin, Wnt and active β-catenin, and downregulated E-cadherin expression, and these changes were obviously suppressed by treatment with XAV-939 (a Wnt/β-catenin inhibitor).
CONCLUSIONS
High YEATS2 expression activates Wnt/β-catenin signaling to promote EMT in GC and is correlated with poor prognosis of GC patients.
Humans
;
Stomach Neoplasms/pathology*
;
Epithelial-Mesenchymal Transition
;
Wnt Signaling Pathway
;
Cell Line, Tumor
;
Prognosis
;
Cell Movement
;
Male
;
Female
;
beta Catenin/metabolism*
10.Hypaphorine alleviates Crohn's disease-like colitis in mice by inhibiting intestinal epithelial inflammatory response and protecting intestinal barrier function.
Qingqing HUANG ; Jingjing YANG ; Xuening JIANG ; Wenjing ZHANG ; Yu WANG ; Lugen ZUO ; Lian WANG ; Yueyue WANG ; Xiaofeng ZHANG ; Xue SONG ; Jianguo HU
Journal of Southern Medical University 2025;45(11):2456-2465
OBJECTIVES:
To investigate the effect of hypaphorine (HYP) on Crohn's disease (CD)‑like colitis in mice and its molecular mechanism.
METHODS:
Thirty male C57BL/6J mice were equally randomized into WT, TNBS, and HYP groups, and in the latter two groups, mouse models of CD-like colitis were established using TNBS with daily gavage of 15 mg/kg HYP or an equivalent volume of saline. The treatment efficacy was evaluated by assessing the disease activity index (DAI), body weight changes, colon length and histopathology. The effect of HYP was also tested in a LPS-stimulated Caco-2 cell model mimicking intestinal inflammation by evaluating inflammatory responses and barrier function of the cells using qRT-PCR and immunofluorescence staining. GO and KEGG analyses were conducted to explore the therapeutic mechanism of HYP, which was validated in both the cell and mouse models using Western blotting.
RESULTS:
In the mouse models of CD-like colitis, HYP intervention obviously alleviated colitis as shown by significantly reduced body weight loss, colon shortening, DAI and inflammation scores, and expressions of pro-inflammatory factors in the colon tissues. HYP treatment also significantly increased the TEER values, reduced bacterial translocation to the mesenteric lymph nodes, liver, and spleen, lowered serum levels of I-FABP and FITC-dextran, increased the number of colonic tissue cup cells, and upregulated colonic expressions of MUC2 and tight junction proteins (claudin-1 and ZO-1) in the mouse models. In LPS-stimulated Caco-2 cells, HYP treatment significantly inhibited the expressions of pro-inflammatory factors and increased the expressions of tight junction proteins. Western blotting showed that HYP downregulated the expressions of the key proteins in the TLR4/MyD88 signaling pathway in both the in vitro and in vivo models.
CONCLUSIONS
HYP alleviates CD-like colitis in mice possibly by suppressing intestinal epithelial inflammation and improving gut barrier function.
Animals
;
Male
;
Mice, Inbred C57BL
;
Crohn Disease/drug therapy*
;
Mice
;
Humans
;
Caco-2 Cells
;
Intestinal Mucosa/metabolism*
;
Colitis/drug therapy*
;
Disease Models, Animal
;
Inflammation
;
Toll-Like Receptor 4/metabolism*
;
Myeloid Differentiation Factor 88/metabolism*
;
Intestinal Barrier Function

Result Analysis
Print
Save
E-mail