1.miR-509-3p promotes oxidized low-density lipoprotein-induced apoptosis in mouse aortic endothelial cells.
Rui ZHANG ; Yanqiu SONG ; Fumei ZHAO ; Ting LIU ; Hongliang CONG ; Hui ZHAO
Chinese Critical Care Medicine 2023;35(12):1291-1297
OBJECTIVE:
To investigate the effect of microRNA-509-3p (miR-509-3p) on the apoptosis of atherosclerotic vascular endothelial cells.
METHODS:
Mouse aortic endothelial cells (MAECs) were divided into normal control group, oxidized low-density lipoprotein (ox-LDL) group, miR-509-3p overexpression group, miR-509-3p overexpression control group, miR-509-3p inhibitor + ox-LDL group, and miR-509-3p inhibitor control + ox-LDL group. MAEC were induced with 100 mg/L ox-LDL for 24 hours, and then transfected with miR-509-3p overexpression/inhibitor and corresponding control for 48 hours. The miR-509-3p expression in MAECs exposed to ox-LDL was detected using real-time fluorescence quantitative polymerase chain reaction (RT-qPCR). Flow cytometry was used to detect the level of apoptosis, and cell counting kit (CCK-8) was used to detect the proliferation activity of MAECs. The direct gene targets of miR-509-3p were predicted using bioinformatics analyses and confirmed using a dual luciferase reporter assay. The expression of Bcl-2 mRNA and protein was detected by RT-qPCR and Western blotting, respectively.
RESULTS:
Compared with the normal control group, miR-509-3p was significantly upregulated in ox-LDL-stimulated MAECs (1.68±0.85 vs. 1.00±0.30, t = 2.398, P < 0.05). After transfection of MAECs with miR-509-3p overexpression, the luciferase activity of the BCL2 3'UTR WT reporter gene was significantly lower than that of miR-509-3p overexpression control group (0.83±0.06 vs. 1.00±0.07, t = 4.531, P = 0.001). The luciferase activity of the BCL2 3'-UTR mutant (MUT) reporter gene was not significantly different from that of miR-509-3p overexpression control group (0.94±0.05 vs. 1.00±0.08, t = 1.414, P = 0.188). Compared with the normal control group and miR-509-3p mimics control group, the cell proliferation activity was decreased [(0.60±0.06)% vs. (1.00±0.09)%, (0.89±0.04)%, both P < 0.01], the percentage of apoptotic cells were increased [(23.46±2.02)% vs. (7.66±1.52)%, (10.40±0.78)%, both P < 0.05], and the mRNA and protein expression of Bcl-2 were significantly downregulated (Bcl-2 mRNA: 0.52±0.13 vs. 1.00±0.36, 1.10±0.19, Bcl-2 protein: 0.42±0.07 vs. 1.00±0.11, 0.93±0.10, both P < 0.01) in miR-509-3p overexpression group. Compared with the ox-LDL group, inhibition of miR-509-3p expression could increase the proliferation activity of MAECs induced by ox-LDL [(0.64±0.35)% vs. (0.34±0.20%)%, P < 0.05], and reduce the apoptosis rate [(13.59±2.22)% vs. (29.84±5.19)%, P < 0.01], and up-regulated the expression of Bcl-2 mRNA and protein in MAECs induced by ox-LDL (Bcl-2 mRNA relative expression: 0.82±0.09 vs. 0.52±0.10, Bcl-2 protein relative expression: 0.83±0.17 vs. 0.40±0.07, both P < 0.05).
CONCLUSIONS
Bcl-2 was one of the target genes of miR-509-3p. miR-509-3p can reduce the proliferation activity of endothelial cells, reduce the expression of Bcl-2, and promote cell apoptosis, thereby promoting the occurrence and development of atherosclerosis. Inhibition of miR-509-3p expression may be a potential therapeutic target for atherosclerosis.
Animals
;
Mice
;
Humans
;
Endothelial Cells
;
MicroRNAs/metabolism*
;
Signal Transduction
;
Lipoproteins, LDL/metabolism*
;
Apoptosis
;
RNA, Messenger/metabolism*
;
Proto-Oncogene Proteins c-bcl-2/pharmacology*
;
Atherosclerosis/metabolism*
;
Luciferases/pharmacology*
;
Cell Proliferation
;
Human Umbilical Vein Endothelial Cells
2.Role of steroid receptor-associated and regulated protein in tumor progression and progesterone receptor signaling in endometrial cancer.
Jie LIU ; Zhiqi WANG ; Jingyi ZHOU ; Jiaqi WANG ; Xiangjun HE ; Jianliu WANG
Chinese Medical Journal 2023;136(21):2576-2586
BACKGROUND:
Steroid receptor-associated and regulated protein (SRARP) suppresses tumor progression and modulates steroid receptor signaling by interacting with estrogen receptors and androgen receptors in breast cancer. In endometrial cancer (EC), progesterone receptor (PR) signaling is crucial for responsiveness to progestin therapy. The aim of this study was to investigate the role of SRARP in tumor progression and PR signaling in EC.
METHODS:
Ribonucleic acid sequencing data from the Cancer Genome Atlas, Clinical Proteomic Tumor Analysis Consortium, and Gene Expression Omnibus were used to analyze the clinical significance of SRARP and its correlation with PR expression in EC. The correlation between SRARP and PR expression was validated in EC samples obtained from Peking University People's Hospital. SRARP function was investigated by lentivirus-mediated overexpression in Ishikawa and HEC-50B cells. Cell Counting Kit-8 assays, cell cycle analyses, wound healing assays, and Transwell assays were used to evaluate cell proliferation, migration, and invasion. Western blotting and quantitative real-time polymerase chain reaction were used to evaluate gene expression. The effects of SRARP on the regulation of PR signaling were determined by co-immunoprecipitation, PR response element (PRE) luciferase reporter assay, and PR downstream gene detection.
RESULTS:
Higher SRARP expression was significantly associated with better overall survival and disease-free survival and less aggressive EC types. SRARP overexpression suppressed growth, migration, and invasion in EC cells, increased E-cadherin expression, and decreased N-cadherin and Wnt family member 7A ( WNT7A ) expression. SRARP expression was positively correlated with PR expression in EC tissues. In SRARP -overexpressing cells, PR isoform B (PRB) was upregulated and SRARP bound to PRB. Significant increases in PRE-based luciferase activity and expression levels of PR target genes were observed in response to medroxyprogesterone acetate.
CONCLUSIONS
This study illustrates that SRARP exerts a tumor-suppressive effect by inhibiting the epithelial-mesenchymal transition via Wnt signaling in EC. In addition, SRARP positively modulates PR expression and interacts with PR to regulate PR downstream target genes.
Female
;
Humans
;
Receptors, Progesterone/metabolism*
;
Proteomics
;
Cell Line, Tumor
;
Endometrial Neoplasms/metabolism*
;
Cell Proliferation/genetics*
;
Luciferases/pharmacology*
;
Gene Expression Regulation, Neoplastic/genetics*
3.Matrine inhibits inflammatory response induced by TNF-α in human umbilical vein endothelial cells through miR-25-3p-mediated Klf4 pathway.
Zi-Ping XIANG ; Yan-Jie LI ; Huan MA ; Xing WANG ; Hui-Xin ZHANG ; Chao WANG
China Journal of Chinese Materia Medica 2023;48(17):4731-4737
This study aimed to analyze the effect of matrine on tumor necrosis factor-α(TNF-α)-induced inflammatory response in human umbilical vein endothelial cells(HUVECs) and explore whether the underlying mechanism was related to the miR-25-3p-mediated Krüppel-like factor 4(Klf4) pathway. The HUVEC cell inflammation model was induced by TNF-α stimulation. After 24 or 48 hours of incubation with different concentrations of matrine(0.625, 1.25, and 2.5 mmol·L~(-1)), CCK-8 assay was used to detect cell proliferation. After treatment with 2.5 mmol·L~(-1) matrine for 48 h, the expression of TNF-α, interleukin-6(IL-6), interleukin-1β(IL-1β), and Klf4 mRNA and miR-25-3p was detected by real-time fluorescence-based quantitative PCR, and the protein expression of TNF-α, IL-6, IL-1β, and Klf4 was detected by Western blot. The anti-miR-25-3p was transfected into HUVECs, and the effect of anti-miR-25-3p on TNF-α-induced cell proliferation and inflammatory factors was detected by the above method. The cells were further transfected with miR-25-3p and incubated with matrine to detect the changes in proliferation and expression of related inflammatory factors, miR-25-3p, and Klf4. The targeting relationship between miR-25-3p and Klf4 was verified by bioinformatics analysis and dual luciferase reporter gene assay. The results displayed that matrine could inhibit TNF-α-induced HUVEC proliferation, decrease the mRNA and protein expression of TNF-α, IL-6, and IL-1β, increase the mRNA and protein expression of Klf4, and reduce the expression of miR-25-3p. Bioinformatics analysis showed that there were specific complementary binding sites between miR-25-3p and Klf4 sequences. Dual luciferase reporter gene assay confirmed that miR-25-3p negatively regulated Klf4 expression in HUVECs by targeting. The inhibition of miR-25-3p expression can reduce TNF-α-induced cell proliferation and mRNA and protein expression of TNF-α, IL-6, and IL-1β. MiR-25-3p overexpression could reverse the effect of matrine on TNF-α-induced cell proliferation and the mRNA and protein expression of TNF-α, IL-6, IL-1β, and Klf4. This study shows that matrine inhibits the inflammatory response induced by TNF-α in HUVECs through miR-25-3p-mediated Klf4 pathway.
Humans
;
Tumor Necrosis Factor-alpha/metabolism*
;
MicroRNAs/metabolism*
;
Human Umbilical Vein Endothelial Cells
;
Matrines
;
Interleukin-6/genetics*
;
Signal Transduction
;
Antagomirs
;
Inflammation/metabolism*
;
Luciferases/pharmacology*
;
RNA, Messenger
;
Apoptosis
4.Metformin and lipopolysaccharide regulate transcription of NFATc2 gene via the transcription factor RUNX2.
Xiao Yang XUE ; Zhong Hao LI ; Ming ZHAO
Journal of Southern Medical University 2022;42(3):425-431
OBJECTIVE:
To construct a luciferase reporter gene vector carrying human nuclear factor of activated T cells 2 (NFATc2) gene promoter and examine the effects of metformin and lipopolysaccharide (LPS) on the transcriptional activity of NFATc2 gene.
METHODS:
The promoter sequence of human NFATc2 gene was acquired from UCSC website for PCR amplification. NFATc2 promoter fragment was inserted into pGL3-basic plasmid double cleaved with Kpn Ⅰ and Hind Ⅲ. The resultant recombinant plasmid pGL3-NFATC2-promoter was co-transfected with the internal reference plasmid pRL-TK in 293F cells, and luciferase activity in the cells was detected. Reporter gene vectors of human NFATc2 gene promoter with different fragment lengths were also constructed and assayed for luciferase activity. The changes in transcription activity of NFATc2 gene were assessed after treatment with different concentrations of metformin and LPS for 24 h. We also examined the effect of mutation in RUNX2-binding site in NFATC2 gene promoter on the regulatory effects of metformin and LPS on NFATc2 transcription.
RESULTS:
We successfully constructed pGL3-NFATc2-promoter plasmids carrying different lengths (2170 bp, 2077 bp, 1802 bp, 1651 bp, 1083 bp, 323 bp) of NFATc2 promoter sequences as verified by enzymatic digestion and sequencing. Transfection of 293F cells with the plasmid carrying a 1651 bp NFATc2 promoter (pGL3-1651 bp) resulted in the highest transcriptional activity of NFATc2 gene, and the luciferase activity was approximately 3.3 times that of pGL3-2170 bp (1.843 ± 0.146 vs 0.547 ± 0.085). Moderate (5 mmol/L) and high (10 mmol/L) concentrations of metformin significantly upregulated the transcriptional activity of pGL3-1651 bp by up to 2.5 and 3 folds, respectively. LPS at different doses also upregulated the transcriptional activity of pGL3-1651 bp by at least 1.6 folds. The mutation in the RUNX2 binding site on pGL3-1651 bp obviously reduced metformin- and LPS-induced enhancement of pGL3-1651bp transcription by 1.7 and 2 folds, respectively.
CONCLUSION
pGL3-NFATc2-promoter can be transcribed and activated in 293F cells, and LPS and metformin can activate the transcription of pGL3- NFATc2-promoter in a RUNX2-dependent manner.
Core Binding Factor Alpha 1 Subunit/genetics*
;
Humans
;
Lipopolysaccharides/pharmacology*
;
Luciferases/genetics*
;
Metformin/pharmacology*
;
NFATC Transcription Factors/genetics*
;
Promoter Regions, Genetic
;
T-Lymphocytes
;
Transcription, Genetic/drug effects*
;
Transfection
5.Development and Application of An Assay for High-throughput Antiviral Compounds Screening against Alphaviruses.
Yan WEI ; Jianjiao LI ; Huanqin WANG ; Shan CEN ; Guodong LIANG ; Wenjie TAN ; Wuyang ZHU
Chinese Journal of Virology 2015;31(6):641-646
To establish a cell-based rapid luciferase suppression assay for high-throughput screening (HTS) anti-alphaviruses compounds screening, which could cause viral encephalitis, raise the social issues associated directly with public health and huge economic burden to the society. The Gaussia luciferase assay system was used for HTS model for identifying inhibitors of labeled virus XJ160-GLUC. The decreased 50% GLUC activity inhibition ratio was deemed to be the screening positive index. The reaction system in this model was optimized, and the reliability of the model was evaluated. For HTS model's optimization, cells were infected with XJ160-GLUC at an MOI of 0.025 PFU/cell. The supernatant treated with compounds 48h were collected for GLUC expression detection. In the model, Z' factor was up to 0.71, demonstrating that HTS assay for identifying inhibitors that target all aspects of the viral life cycle of XJ160-GLUC was stable and reliable. After screening 8080 compounds (five-in-one), 341 positive samples were selected, and the positive rate was 4.2% with a cutoff at 50% inhibition. Then 1705 compounds were screened subsequently and the positive rate was 1.1% with obtaining 19 positive compounds. These results will lay the foundation for finding the anti-alphaviruses' drug targets.
Alphavirus
;
drug effects
;
genetics
;
metabolism
;
Animals
;
Antiviral Agents
;
pharmacology
;
Drug Evaluation, Preclinical
;
methods
;
Genes, Reporter
;
High-Throughput Screening Assays
;
methods
;
Luciferases
;
genetics
;
metabolism
6.In Vitro Infectivity Assessment by Drug Susceptibility Comparison of Recombinant Leishmania major Expressing Enhanced Green Fluorescent Protein or EGFP-Luciferase Fused Genes with Wild-Type Parasite.
Somayeh SADEGHI ; Negar SEYED ; Mohammad Hossein ETEMADZADEH ; Saeid ABEDIANKENARI ; Sima RAFATI ; Tahereh TAHERI
The Korean Journal of Parasitology 2015;53(4):385-394
Leishmaniasis is a worldwide uncontrolled parasitic disease due to the lack of effective drug and vaccine. To speed up effective drug development, we need powerful methods to rapidly assess drug effectiveness against the intracellular form of Leishmania in high throughput assays. Reporter gene technology has proven to be an excellent tool for drug screening in vitro. The effects of reporter proteins on parasite infectivity should be identified both in vitro and in vivo. In this research, we initially compared the infectivity rate of recombinant Leishmania major expressing stably enhanced green fluorescent protein (EGFP) alone or EGFP-luciferase (EGFP-LUC) with the wild-type strain. Next, we evaluated the sensitivity of these parasites to amphotericin B (AmB) as a standard drug in 2 parasitic phases, promastigote and amastigote. This comparison was made by MTT and nitric oxide (NO) assay and by quantifying the specific signals derived from reporter genes like EGFP intensity and luciferase activity. To study the amastigote form, both B10R and THP-1 macrophage cell lines were infected in the stationary phase and were exposed to AmB at different time points. Our results clearly revealed that the 3 parasite lines had similar in vitro infectivity rates with comparable parasite-induced levels of NO following interferon-gamma/lipopolysaccharide induction. Based on our results we proposed the more reporter gene, the faster and more sensitive evaluation of the drug efficiency.
Amphotericin B/*pharmacology
;
Animals
;
Antiprotozoal Agents/*pharmacology
;
Drug Evaluation, Preclinical/instrumentation/*methods
;
Female
;
Gene Expression
;
Genes, Reporter
;
Green Fluorescent Proteins/genetics/*metabolism
;
Humans
;
Leishmania major/*drug effects/genetics/growth & development/physiology
;
Leishmaniasis, Cutaneous/*parasitology
;
Luciferases/genetics/*metabolism
;
Mice
7.Establishment and application of a high-throughput drug screening model based on COL1A1 promoter for anti-liver fibrosis.
Shuang-Shuang ZHAO ; Ju-Xian WANG ; Yu-Cheng WANG ; Rong-Guang SHAO ; Hong-Wei HE
Acta Pharmaceutica Sinica 2015;50(2):169-173
For screening the potential drugs as anti-liver fibrosis candidates, we established a high- throughput drug screening cell model based on COL1A1 promoter. The activity of COL1A1 promoter and luciferase reporter gene can be elevated by TGF-β1, and inhibited by candidate drugs. We constructed a recombined plasmid with COL1A1 promoter and luciferase reporter gene pGL4.17, the activity of COL1A1 promoter was reflected by fluorescence intensity. COL1A1 promoter activity was detected by Dual-Luciferase Reporter Assay System, it came that the relative luciferase activity of COL1A1 promoter was 15.98 times higher than that of control group induced by TGF-β1, showing the recombined plasmid could be used in cell model. The recombined plasmid was transfected into human hepatic stellate cells LX2, detected the effect of potential drugs, and obtained a stable expression system through stable transfection and monoclonal cell culture. A sample which could reduce COL1A1 promoter activity signally by our cell model, decreased collagen I mRNA and protein expression detected by real-time RT-PCR and Western blotting. It indicates this novel cell model can be used in high-throughput drug screening of potential anti-liver fibrosis drugs.
Collagen Type I
;
genetics
;
Drug Evaluation, Preclinical
;
methods
;
Genes, Reporter
;
Hepatic Stellate Cells
;
High-Throughput Screening Assays
;
Humans
;
Liver Cirrhosis
;
drug therapy
;
Luciferases
;
Plasmids
;
Promoter Regions, Genetic
;
RNA, Messenger
;
Transfection
;
Transforming Growth Factor beta1
;
pharmacology
8.Establishment of a cell-based filovirus entry inhibitor evaluation system.
Acta Pharmaceutica Sinica 2015;50(12):1538-1544
Ebola virus, the cause of severe and fatal hemorrahagic fever in humans, belongs to filovirus family. This study was designed to establish a cell-based screening and evaluation system in the pharmacological study of antivirus compounds. Three reporter systems were established with recombinant pseudoviral luciferase of HIV core (pNL4-3.Luc.R(-)E(-)) packed with filovirus glycoprotein (EBOV-Zaire GP/HIV-luc, EBOV-Sudan GP/HIV-luc and Marburg GP/HIV-luc), which are required for virus entry of cells. The level of filovirus entry was determined by the expression of luciferase reporter gene in the infected cells. For screening of filovirus entry inhibitors, the vesicular stomatitis G packed pseudovirions (VSVG/HIV-luc) was used to determine the compound specificity. The results of known filovirus entry inhibitors demonstrated successful establishment of the new model systems, which would be useful in high throughput screening of anti-filovirus drugs in the future.
Antiviral Agents
;
pharmacology
;
Drug Evaluation, Preclinical
;
methods
;
Ebolavirus
;
drug effects
;
physiology
;
Genes, Reporter
;
Glycoproteins
;
genetics
;
Hemorrhagic Fever, Ebola
;
Humans
;
Luciferases
;
Viral Proteins
;
genetics
;
Virus Internalization
;
drug effects
9.Inhibitory effect of cryptotanshinone on angiogenesis and Wnt/β-catenin signaling pathway in human umbilical vein endothelial cells.
Qian CHEN ; Qin ZHUANG ; Wei MAO ; Xiao-ming XU ; Li-hui WANG ; Hai-bing WANG
Chinese journal of integrative medicine 2014;20(10):743-750
OBJECTIVETo investigate the anti-angiogenic effect of cryptotanshinone (CPT) on human umbilical vein endothelial cells (HUVECs) and the effect of CPT on Wnt/β-catenin signaling pathway.
METHODSHUVECs were incubated with 0, 2.5, 5, 10, and 20 μ mol/L CPT for detecting cell viability with dimethyl thiazolyl-2,5-diphenyltetrazolium bromide (MTT) assay. Then, HUVECs were incubated with 0, 2.5, 5, and 10 μ mol/L CPT for detecting endothelial cell migration, invasion, and tubular-like structure formation with wound healing, transwell invasion and matrigel tube formation assays, respectively. To gain insight into CPT-mediated signaling, the effects of CPT on T-cell factor/lymphocyte enhancer factor (TCF/LEF) transcription factors were detected by the Dual-luciferase reporter assay. Next, the nuclear expression of β-catenin was evaluated using Western blot and immunochemistry. Finally, vascular endothelial growth factor (VEGF) and cyclin D1, downstream proteins of the Wnt pathway were examined with Western blot.
RESULTSCPT dose-dependently suppressed endothelial cell viability, migration, invasion, and tubular-like structure formation. In particular, CPT blocked β-catenindependent transcription in HUVECs in a dose-dependent manner. In Western bolt, 10 μ mol/L CPT decreased expression of β-catenin in nucleus of HUVECs (P<0.01). In immunohistochemistry, β-catenin was more potent in response to LiCl (an activator of the pathway) treatment. However, the signals were weaker in the nucleus of the CPT (10 μ mol/L) group, compared to the positive control. Also, VEGF and cyclin D1 were both eliminated by CPT in 5 and 10 μ mol/L doses (P<0.05).
CONCLUSIONOur study supported the role of CPT as an angiogenic inhibitor, which may impact on the Wnt/β-catenin signaling pathway.
Blotting, Western ; Cell Movement ; drug effects ; Cell Survival ; drug effects ; Cyclin D1 ; metabolism ; Human Umbilical Vein Endothelial Cells ; cytology ; drug effects ; metabolism ; Humans ; Immunohistochemistry ; Luciferases ; metabolism ; Neovascularization, Physiologic ; drug effects ; Phenanthrenes ; chemistry ; pharmacology ; Vascular Endothelial Growth Factor A ; metabolism ; Wnt Signaling Pathway ; drug effects ; beta Catenin ; metabolism
10.Establishment of surfactant-associated protein A suicide gene system and analysis of its activity.
Wan-guang ZHANG ; Li HE ; Hua-qing SU ; Xue-mei SHI ; Bo ZHANG ; Si-si WU ; Li MEI ; Katirai FOAD ; Yong-jian XU ; Zhen-xiang ZHANG ; Jian-ping ZHAO ; Wei-ning XIONG ; Guo-hua ZHEN ; Hui-lan ZHANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(3):337-342
Alveolar epithelial type II (AT II) cells are essential for lung development and remodeling, as they are precursors for type I cells and also produce other non-repair cells (fibroblasts). Progenitor cells are believed to possess capability of multi-potent transdifferentiation, which is closely related to the niche, suggesting the importance of establishment of a lung progenitor cell niche model. We hypothesized that pulmonary surfactant-associated protein A (SPA) suicide gene system would cause AT II cell to kill itself through apoptosis and leave its niche. In vitro, the recombinant adeno-associated virus vectors-SPA-thymidine kinase (rAAV-SPA-TK) system was established to get targeted apoptotic AT II cells. The apoptosis of AT II cells was detected by using MTT. The results showed that cloned SPA gene promoter had specific transcriptional activity in SPA high expression cells, and SPA high expression cells (H441) transfected with TK gene had higher sensitivity to ganciclovir (GCV) than SPA low expression cells (A549). In vivo, increased apoptosis of AT II cells induced by GCV in rAAV-SPA-TK system was observed by TUNEL. Finally, the successful packaging and application of rAAV-SPA-TK system provide experimental basis to get specific lung progenitor cell (AT II) niche in vitro and in vivo.
Antiviral Agents
;
pharmacology
;
Apoptosis
;
drug effects
;
Cell Line, Tumor
;
Cell Survival
;
drug effects
;
Cells, Cultured
;
Dependovirus
;
genetics
;
Dose-Response Relationship, Drug
;
Electrophoresis, Polyacrylamide Gel
;
Epithelial Cells
;
cytology
;
drug effects
;
metabolism
;
Ganciclovir
;
pharmacology
;
Gene Expression Regulation, Neoplastic
;
Genes, Transgenic, Suicide
;
genetics
;
Genetic Vectors
;
genetics
;
Humans
;
In Situ Nick-End Labeling
;
Luciferases
;
genetics
;
metabolism
;
Promoter Regions, Genetic
;
genetics
;
Pulmonary Alveoli
;
cytology
;
metabolism
;
Pulmonary Surfactant-Associated Protein A
;
genetics
;
metabolism
;
Thymidine Kinase
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail