1.Clinical value of peripheral immune function status in the assessment of ‘Deficiency of Vital Qi’ in lung cancer metastasis
XU Fan1,2 ; TIAN Jianhui1,2 ; LIU Youjun1,2 ; CHENG Zhenyang1,2 ; QUE Zujun2 ; LUO Bin1 ; YANG Yun1 ; YAO Jialiang1 ; YAO Wang1 ; LU Xinyi1,2 ; LIU Yao1,2 ; ZHOU Yiyang1 ; WU Jianchun1 ; LUO Yingbin1 ; LI Minghua1 ; SHI Wenfei1 ; CUI Yajing1 ; SHANGGUAN Wenji3 ; LI Yan1
Chinese Journal of Cancer Biotherapy 2025;32(10):1065-1070
[摘 要] 目的:探索外周免疫功能状态与肺癌转移的关联,筛选可用于肺癌转移“正虚”评估的外周血免疫标志物。方法:回顾性分析2023年3月至2025年4月期间上海中医药大学附属市中医医院收治的肺癌患者治疗前的外周血免疫标志物,根据是否存在远处转移,将患者分为无转移组与转移组,比较两组间免疫细胞和细胞因子的表达差异。将单因素分析P < 0.05的外周血免疫指标纳入多因素二元Logistic回归模型,以识别肺癌转移的独立预测因素。结果:共纳入193例肺癌患者(无转移组101例,转移组92例),两组在性别、年龄、吸烟史、饮酒史、病理类型间的差异均无统计学意义(均P > 0.05)。单因素分析显示,无转移组与转移组间有多项免疫指标存在显著差异(均P < 0.05),包括:淋巴细胞计数,CD3+、CD4+、CD8+ T、CD19+ B细胞及CD3-CD16+56+ NK细胞绝对计数,Treg细胞、CD8+CD28+ Treg细胞、G-MDSC和CD3-CD16+CD56+dim NK细胞百分率,以及细胞因子IL-1β、IL-6和IL-10水平。将差异性指标行二元Logistic回归分析,提示外周血中Treg细胞和CD8+CD28+ Treg细胞百分率是肺癌发生远处转移的独立预测因素[OR = 1.193, 95% CI(1.047, 1.36), P < 0.01; OR = 0.978, 95% CI(0.957, 0.999), P < 0.05]。结论:外周血免疫功能紊乱是肺癌转移“正虚”的生物学基础,本研究以量化指标证实外周免疫功能状态与肺癌转移的相关性,为“正虚伏毒”和“肿瘤转移态”理论提供了实证。
2.Material basis of toad oil and its pharmacodynamic effect in a mouse model of atopic dermatitis.
Yu-Yang LIU ; Xin-Wei YAN ; Bao-Lin BIAN ; Yao-Hua DING ; Xiao-Lu WEI ; Meng-Yao TIAN ; Wei WANG ; Hai-Yu ZHAO ; Yan-Yan ZHOU ; Hong-Jie WANG ; Ying YANG ; Nan SI
China Journal of Chinese Materia Medica 2025;50(1):165-177
This study aims to comprehensively analyze the material basis of toad visceral oil(hereafter referred to as toad oil), and explore the pharmacological effect of toad oil on atopic dermatitis(AD). Ultra-high performance liquid chromatography-linear ion trap/orbitrap high-resolution mass spectrometry(UHPLC-LTQ-Orbitrap-MS) and gas chromatography-mass spectrometry(GC-MS) were employed to comprehensively identify the chemical components in toad oil. The animal model of AD was prepared by the hapten stimulation method. The modeled animals were respectively administrated with positive drug(0.1% hydrocortisone butyrate cream) and low-and high-doses(1%, 10%) of toad oil by gavage. The effect of toad oil on AD was evaluated with the AD score, ear swelling rate, spleen index, and pathological section results as indicators. A total of 99 components were identified by UHPLC-LTQ-Orbitrap-MS, including 14 bufadienolides, 7 fatty acids, 6 alkaloids, 10 ketones, 18 amides, and other compounds. After methylation of toad oil samples, a total of 20 compounds were identified by GC-MS. Compared with the model group, the low-and high-dose toad oil groups showed declined AD score, ear swelling rate, and spleen index, alleviated skin lesions, and reduced infiltrating mast cells. This study comprehensively analyzes the chemical composition and clarifies the material basis of toad oil. Meanwhile, this study proves that toad oil has a good therapeutic effect on AD and is a reserve resource of traditional Chinese medicine for external use in the treatment of AD.
Animals
;
Dermatitis, Atopic/immunology*
;
Disease Models, Animal
;
Mice
;
Male
;
Gas Chromatography-Mass Spectrometry
;
Humans
;
Bufonidae
;
Oils/administration & dosage*
;
Chromatography, High Pressure Liquid
;
Female
;
Mice, Inbred BALB C
3.TSZAF monomer combination downregulates the Wnt/β-catenin signaling pathway and inhibits neutrophil recruitment to prevent lung cancer metastasis.
Pan YU ; Jialiang YAO ; Long ZHANG ; Yanhong WANG ; Xinyi LU ; Jiajun LIU ; Zujun QUE ; Yao LIU ; Qian BA ; Jiwei LIU ; Yan WU ; Jianhui TIAN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(9):1069-1079
Metastasis remains the primary cause of cancer-related mortality worldwide. Circulating tumor cells (CTCs) represent critical targets for metastasis prevention and treatment. Traditional Chinese medicine may prevent lung cancer metastasis through long-term intervention in CTC activity. Tiao-Shen-Zhi-Ai Formular (TSZAF) represents a Chinese medicine compound prescription utilized clinically for lung cancer treatment. This study combined three principal active ingredients from TSZAF into a novel TSZAF monomer combination (TSZAF mc) to investigate its anti-metastatic effects and mechanisms. TSZAF mc demonstrated significant inhibition of proliferation, migration, and invasion in CTC-TJH-01 and LLC cells, while inducing cellular apoptosis in vitro. Moreover, TSZAF mc substantially inhibited LLC cell growth and metastasis in vivo. Mechanistically, TAZSF mc significantly suppressed the Wnt/β-catenin signaling pathway and CXCL5 expression in lung cancer cells and tissues. Additionally, TAZSF mc notably reduced neutrophil infiltration in metastatic lesions. These findings indicate that TSZAF mc inhibits lung cancer growth and metastasis by suppressing the Wnt/β-catenin signaling pathway and reducing CXCL5 secretion, thereby decreasing neutrophil recruitment and infiltration. TSZAF mc demonstrates potential as an effective therapeutic agent for lung cancer metastasis.
Lung Neoplasms/genetics*
;
Wnt Signaling Pathway/drug effects*
;
Animals
;
Humans
;
Drugs, Chinese Herbal/pharmacology*
;
Mice
;
Neoplasm Metastasis/prevention & control*
;
Cell Proliferation/drug effects*
;
Cell Line, Tumor
;
Neutrophil Infiltration/drug effects*
;
Down-Regulation/drug effects*
;
Cell Movement/drug effects*
;
beta Catenin/genetics*
;
Apoptosis/drug effects*
;
Mice, Inbred C57BL
;
Male
;
Neoplastic Cells, Circulating/drug effects*
5.Construction and Testing of Health LifeStyle Evidence (HLSE)
Chen TIAN ; Yong WANG ; Yilong YAN ; Yafei LIU ; Yao LU ; Mingyao SUN ; Jianing LIU ; Yan MA ; Jinling NING ; Ziying YE ; Qianji CHENG ; Ying LI ; Jiajie HUANG ; Shuihua YANG ; Yiyun WANG ; Bo TONG ; Jiale LU ; Long GE
Medical Journal of Peking Union Medical College Hospital 2024;15(6):1413-1421
Healthy lifestyles and good living habits are effective strategies and important approaches to prevent chronic non-communicable diseases. With the development of evidence-based medicine, the evidence translation system has made some achievements in clinical practice. There is, however, no comprehensive, professional and efficient system for translating lifestyle evidence globally. Therefore, the Health Lifestyle Evidence (HLSE) Group of Lanzhou University constructed the HLSE Evidence Translation System (
6.Method for Developing Patient Decision Aid in China
Yao LU ; Qian ZHANG ; Qianji CHENG ; Jianing LIU ; Mingyao SUN ; Jinling NING ; Jiajie HUANG ; Simeng REN ; Wenzheng ZHANG ; Yajie LIU ; Xiyuan DENG ; Jinhui TIAN ; Jie LIU ; Long GE
Medical Journal of Peking Union Medical College Hospital 2024;15(6):1422-1431
To systematically construct a guideline to provide a methodological guide for researchers to develop patient decision aids. Through a literature review of international methodological guidance for developing patient decision aids, sorting out the similarities and differences in the processes and methods for developing patient decision aids, and combining them with the topic discussion of the working group, the initial guideline was drafted. A total of 13 guidances was included, with the initial version containing 3 phases, 13 steps, and 48 points. We invited 19 multidisciplinary domain experts for forming consensus. The final version of the guideline contains 3 phases, 11 steps, and 24 points. The guideline has great potential to guide the development of patient decision aids in China and is expected to fill the methodological gap in the field. In the future, several rounds of pilot testing of the guideline based on specific decision issues will be conducted, and the guideline will be further revised and improved.
7.Construction and Testing of Health LifeStyle Evidence (HLSE)
Chen TIAN ; Yong WANG ; Yilong YAN ; Yafei LIU ; Yao LU ; Mingyao SUN ; Jianing LIU ; Yan MA ; Jinling NING ; Ziying YE ; Qianji CHENG ; Ying LI ; Jiajie HUANG ; Shuihua YANG ; Yiyun WANG ; Bo TONG ; Jiale LU ; Long GE
Medical Journal of Peking Union Medical College Hospital 2024;15(6):1413-1421
Healthy lifestyles and good living habits are effective strategies and important approaches to prevent chronic non-communicable diseases. With the development of evidence-based medicine, the evidence translation system has made some achievements in clinical practice. There is, however, no comprehensive, professional and efficient system for translating lifestyle evidence globally. Therefore, the Health Lifestyle Evidence (HLSE) Group of Lanzhou University constructed the HLSE Evidence Translation System (
8.Method for Developing Patient Decision Aid in China
Yao LU ; Qian ZHANG ; Qianji CHENG ; Jianing LIU ; Mingyao SUN ; Jinling NING ; Jiajie HUANG ; Simeng REN ; Wenzheng ZHANG ; Yajie LIU ; Xiyuan DENG ; Jinhui TIAN ; Jie LIU ; Long GE
Medical Journal of Peking Union Medical College Hospital 2024;15(6):1422-1431
To systematically construct a guideline to provide a methodological guide for researchers to develop patient decision aids. Through a literature review of international methodological guidance for developing patient decision aids, sorting out the similarities and differences in the processes and methods for developing patient decision aids, and combining them with the topic discussion of the working group, the initial guideline was drafted. A total of 13 guidances was included, with the initial version containing 3 phases, 13 steps, and 48 points. We invited 19 multidisciplinary domain experts for forming consensus. The final version of the guideline contains 3 phases, 11 steps, and 24 points. The guideline has great potential to guide the development of patient decision aids in China and is expected to fill the methodological gap in the field. In the future, several rounds of pilot testing of the guideline based on specific decision issues will be conducted, and the guideline will be further revised and improved.
9.Clinical Characteristics and Risk Factors of Infection in Hospitalized Patients with Multiple Myeloma with New Generation Therapies
Li-Ping YANG ; Xin-Yi LU ; Xin-Wei WANG ; Qiong YAO ; Lin-Yu LI ; Jie ZHAO ; Shao-Long HE ; Wei-Wei TIAN
Journal of Experimental Hematology 2024;32(6):1790-1797
Objective:To evaluate the clinical characteristics and risk factors of infections occurring during hospitalization in patients with multiple myeloma (MM) treated with new generation therapies (including immuno-modulatory drugs,proteasome inhibitors and monoclonal antibodies).Methods:The clinical data were collected from 155 patients with multiple myeloma who were treated in Shanxi Bethune Hospital from March,2017 to March,2022 and were retrospectively analyzed.For this study,the following therapies were considered to be new generation therapies:lenalidomide,pomadomide,bortezomib,ixazomib,daratumumab. The clinical characteristics and risk factors of infection were analyzed.Results:A total of 155 patients were included in this study.The median follow-up time was 20 months.Of 155 patients with MM,242 infection episodes were identified.Among the 242 infections,the incidence of clinically defined infection (CDI)was the highest (186,76.86%),followed by microbiologically defined infection (MDI)in 50 cases (20.66%),and fever at unknown focus (FUF)in 6 cases (2.48%).35 cases (14.46%)of bacteria,10 cases (4.13%)of viruses,and 5 cases (2. 07%)of fungi were clearly infected.The most common site of infection was the lower respiratory tract in 90 cases (37.19%),the upper respiratory tract in 83 cases (34.30%),and the digestive tract in 27 cases (11.16%).All-cause mortality was 8.39%(13/155).In univariate analysis,there was a higher correlation between ISS stage Ⅲ,the number of treatment lines ≥2,frail and infected patients with multiple myeloma.In multivariate analysis,ISS stage Ⅲ(OR=2.96,95%CI:1.19-7.40,P=0.02),the number of treatment lines ≥2 (OR=2.91,95%CI:1.13-7.51,P=0.03)and frail (OR=3.58,95%CI:1.44-8.89,P=0. 01)were risk factors for infection in patients with multiple myeloma in the era of new drugs.Conclusion:Patients with multiple myeloma treated with new agents are prone to bacterial infection during hospitalization.ISS stage Ⅲ,lines of therapy(≥2)and frail were associated with high risk for infection.
10.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.

Result Analysis
Print
Save
E-mail